Reference Documentation

1.00RC1

Copyright (c) 2004 - Ben Alex

Table of Contents

P e B0 ... ———— iv
TS o Y/ 1
11 BEfOr@ YOU BEJIN ..ovveeiiiii ettt ettt e e e e e e st e e e e e e s e et a e e e e e e e s e annnnees 1
D2 g1 oo [Tox £ o o TSR 1
L1.2.0. CUIMTENE SEBLUS ... 1

1.3 HigQN LEVEI DESION ..ooeiiiiiieeiiiete ettt ettt e e e e e e s e e e e nnnne s 1
G I I =Y 010100 = £ 1
1.3.2. SUPPOItEd SECUIE ODJECESvviiiiiiiieeiiiiie ettt e e nnnaeees 3
1.3.3. Configuration AIITDULESuiiii s nnnnnnnnes 3

1.4, REQUESE COMEEXES ...uuuuiiiiiiii s ssssssssssnsssnsnsnnnssnnsnnns 4
1.4.1. Historical APPrOBCHoooiiiiiiieee e 4
1.4.2. SECUMNEYCONIEXE ...vveieiiieeeiiciiiee e e e e et e e e e e e e e e e e e e e s s st b e e e e e aesesanasbrnreeaaaeeaaans 4
1.4.3. CONMEXE SEOTAGE ...vveeeeieeieieiitie ettt ettt e e s e e e e e s s s e e e e e e s e s s nrbrnreeeeeeeaaan 4
O o= 2 (o] o PO PURPPRR 5

1.5, SECUNLY INEEICEPTIONeeeiieiiiie ettt e e et e e e et e e e e anbn e e e e s nnnne s 5
1.5.1. All SECUrE OBJECLSuuuiiii s nnsnnnnnnnsnnnnnnnnns 5
1.5.2. AOP Alliance (Methodinvocation) Security INtErceptorccccveveeeeeeiiiiciiiieeeeeeeeens 6
1.5.3. Aspectd (JoinPoint) Security INTErCEPLONcvviiiiiiiiiee e 9
1.5.4. FilterInvocation Security INTErCEPLOruvvieiiee e 10

G N W 10T 11T o o SRR 12
1.6.1. AUthentiCation REJUESESuiiiiiiiiiiiiii s nannnnnnnnnnnnnnnnns 12
1.6.2. AULheNtiCation MaNEOEYccoeiiiiiiiiiiiie ettt 13
1.6.3. Provider-Based AUtheNntiCationcccuuuiiiiieeo i 14
1.6.4. Concurrent SESSION SUPPOITvvveiiieeeiiiciiieiee e e e e s e et e e e e e e e e e st e e e e e e e s s aenrbaereeaeas 15
1.6.5. Data Access Object Authentication Providercccceoiiiiiiiniiiiee e 15
1.6.6. IN-Memory AULNENTICALIONuveiiieieii e e e 17
1.6.7. IDBC AULNENEICALIONcceiiiiiiieiee ettt e e e e e e s r e e e e s ennenaaeeeeees 18
1.6.8. JAAS AULNENTICALION ...oeeeieeieeie et e e e e e e e e e s s e aeeeeeens 18
1.6.9. Siteminder AUtNENICALIONcviieiiiiiiiiie e 19
1.6.10. Authentication RECOMMENTALIONSuviiiieeeeeiiiciiiiiee e e e e e e e eeeeeeeeeeens 21

AN U 110 (o g = (o PRSPPI 21
1.7.1. Granted AULNOMITIESoceeieiiiiieiie et e e e e e e et er e e e e e s e anneraeeeeeens 21
1.7.2. ACCESS DECISION MANAGENSvvvviiiiieeei ittt e e e et e e e e e e et e e e e e e s s e eanrbrneeeeeas 22
1.7.3. VOtiNg DECISION M@ANAJESeeiiiiiiiieeiiiiee ettt e s e e 22
1.7.4. Authorization-Related Tag Librariescccooooioiiiiiiiiiii e 24
1.7.5. Authorization RECOMMENELIONSccoiiuviiieiiiiiiee it 26

1.8. After INvocation HanliNgccoooieiiiiiiiiieeie e 26
LL8.1. OVEIVIBIW .eiieeiiiiie ettt ettt e e e ekttt e e e et e e e e ab b e e e e nbe e e e s anbne e e e e nneeaeeenees 26
1.8.2. ACL-Aware AfterlNvOCatioONPrOVIAENScoeviieeiiiiciiiiieee e 27

1.9. Run-As Authentication REPIACEMENTuvviiiiiiiiiiiee e 28
LU0, L PUIMPOSE ...ttt ettt e e ettt e e e e s e s bbb e et e e e e e e s nb b b e e e et e e e e e e e nnrrreeeeeeas 28

I T 1 o R SURR 29

1.10. User Interfacing with the SecurityContextHoIderoooeeiiiiiiiiiiieiee e, 29
O R 0o PP PP 29
1.10.2. HTTP FOrm AULNENLICAIONc.vvieiiiiiiiie ettt 30
1.10.3. HTTP BasiC AULNENLICAIIONcvvieeeiiiiiiiiiie ettt e e r e e e e s eneneneeeeees 31
1.10.4. HTTP Digest AUthentiCationcccciiiiiiiie it 32
1.10.5. ANONYMOUS AULNENTICALIONcuvveiiiiiiiiie et 33

Acegi Security System for Spring

Acegi Security System for Spring

1.10.6. Remember-Me AUtNENTICALTIONcoiiciiiiiiiie et ee e 34
1.10.7. WEll-KNOWN LOCALIONSvveiieiiiiieeeiiiieeeesiieee ettt ettt e e s e e s nnnneeeeenees 36
1.11. CONLAINET AGADEENS ...ttt ettt e e et e e st e e e e abb et e e e nnn e e e e e nnes 36
I 0 @ = VPR UPPRR 36
1.11.2. Adapter Authentication ProVIAEYc..ooiiiiiiieiiiiiiie e 36
1.11.3. Catalina (Tomcat) INStallationccccuuiiiiiiie e 37
0 I N = 1 Y 1 0 = o o PR 38
1.12.5. IBOSS INSLAIEIION ...ceeveeeieiiiiieie et e e e e e e e e e e e e e e e e nneeeeeeeeens 39
1.11.6. RESIN INSAIAHONvveeeeeiiiiie ettt s e e e e e 40
1.12. Yale Central Authentication Service (CAS) SINGIe SIgN ONcovvvvveeiiiiieeeieeeeeee e 41
I @ Y= V= RS URRR 41
1.12.2. HOW CASWOIKS .oeeiiieei ittt e e st e e e e e e et e e e e e e e s s snnntnraaeeaens 41
1.12.3. CAS Server Installation (Optional)eeeiiiieeiiiiieeee e 44
1.12.4. CAS Acegi Security System Client Installationcccceeeeiviiiiiiiieneee i 45
1.12.5. AOVANCEA CAS USAOE ...ttt ettt e s e e 47
1.13. X509 AULNENTICAIONeeiieiiiiiie ettt et e e e e e e st e e s ense e e e e nnneeaeeenees 48
00 G R = V= PRSP 48
1.13.2. X509 With ACEQI SECUILYeeeeiieiiieeeiiiiieeeeiiie e e e sttt e e s eee e e e e e e e e snaee e e e nnneeeeeenees 48
1.13.3. Configuring the X509 ProViderccccviiiiiiee i 49
1.14. ChanNEl SECUNLY ...eeeiiiieie ettt et e e s e s e e e e e e e 49
114D OVEIVIEW eeiiiiieiee ettt e ettt e sttt e e e ettt e e e e ss bt e e e e teb e e e e e nnbe e e e s anbae e e e e nnneeeeennees 49
1.14.2. CONFIQUIBLTON ...t e ettt ettt e et e e e e e e s e e e e e e e e e 50
I U o = PRSPPI 51
1.15. Instance-Based Access Control List (ACL) SECUNMLYcoovvvvreeeiiiieieeiiiiee s 51
LL15. 1. OVEIVIEW eeieeiiiiiee et e e e eeee e e ettt e e e et e e e s st e e e e antee e e e e sseeeeeannaeeeeeannaeeeeannnseeeeennees 51
1.15.2. The org.acegisecurity.acl PaCkageccceeeieeeiiiiiiiieeee e 52
1.15.3. INteQEr MASKE ACLScciiiiiee et ettt ettt se e e et e e e et e e e e snaee e e e nnnneeeeenees 53
L1154, CONCIUSION ...ttt et e et e e s et e e e e e e e e nees 57
OB T T = 57
LL16. 1. OVEIVIEW eeieeiiiiieeeeieeee e e etee e e et e e e sttt e e e et e e e e an bt e e e e nsb e e e e annbe e e e s ansaeeeeeanneeeeeennees 57
1.16.2. FIITErTOBEANPIOXYveiieiiiiiieeeiiitie e sttt ettt e et e et e e s e e e e 57
1.16.3. FIItErCRAINPIOXY .ooiuieieeeieiiiee e ettt e st e e et e e e et e e e s e e e e e nnneeeeenees 58
T 1 = @ o =1 PRSP 59
1.17. Contacts Sample APPIICELIONveieiiiiiiie et 60
1.18. BECOME INVOIVE ...ttt et e et e e et e e s e e e e e e e e e e e 61
1.19. FUrther INfOrMELIONccoi i e e e s e r e e e e e e s e e e e e e e e s annnenes 61

Acegi Security System for Spring

Preface

This document provides a reference guide to the Acegi Security System for Spring, which is a series of classes
that deliver authentication and authorization services within the Spring Framework.

| would like to acknowledge this reference was prepared using the DocBook configuration included with the
Spring Framework. The Spring team in turn acknowledge Chris Bauer (Hibernate) for his assistance with their
DocBook.

Acegi Security System for Spring iv

Chapter 1. Security

1.1. Before You Begin

For your security, each official release JAR of Acegi Security has been signed by the project leader. This does
not in any way alter the liability disclaimer contained in the License, but it does ensure you are using a properly
reviewed, official build of Acegi Security. Please refer to ther eadne. t xt filein the root of the release
distribution for instructions on how to validate the JARs are correctly signed, and which certificate has been
used to sign them.

1.2. Introduction

The Acegi Security System for Spring provides authentication and authorization capabilities for
Spring-powered projects, with optional integration with popular web containers. The security architecture was
designed from the ground up using "The Spring Way" of development, which includes using bean contexts,
interceptors and interface-driven programming. As a consequence, the Acegi Security System for Spring is
useful out-of-the-box for those seeking to secure their Spring-based applications, and can be easily adapted to
complex customized requirements.

Security involves two distinct operations, authentication and authorization. The former relates to resolving
whether or not acaller iswho they claim to be. Authorization on the other hand relates to determining whether
or not an authenticated caller is permitted to perform a given operation.

Throughout the Acegi Security System for Spring, the user, system or agent that needs to be authenticated is
referred to as a"principal”. The security architecture does not have a notion of roles or groups, which you may
be familiar with from other security implementations, although equivalent functionality is fully accommodated
by Acegi Security.

1.2.1. Current Status

The Acegi Security System for Spring iswidely used by members of the Spring Community. The APIsare
considered stable and only minor changes are expected. Having said that, like many other projects we need to
strike a balance between backward compatibility and improvement. Effective version 0.6.1, Acegi Security
uses the Apache Portable Runtime Project versioning guidelines, available from
http://apr.apache.org/versioning. htn.

We are now at release 0.9.0, and alot of effort has been made to implement all non-backward compatible
changes either in or before this release. Some minor improvements are currently intended to the 1.0.0 release,
athough they will in no way modify the project's central interfaces or classes. Users of Acegi Security System
for Spring should therefare be comfortable depending on the current version of the project in their applications.
Please note that we will be changing the package name prefix in the 1.0.0 release, but this should be asmple
"find and replace” type operation in your code.

1.3. High Level Design

1.3.1. Key Components

Acegi Security System for Spring 1

Security

Most enterprise applications have four basic security requirements. First, they need to be able to authenticate a
principal. Second, they need to be able to secure web requests. Third, enterprise applications need to be able to
secure services layer methods. Finally, quite often an enterprise application will need to secure domain object
instances. Acegi Security provides a comprehensive framework for achieving all of these four common
enterprise application security requirements.

The Acegi Security System for Spring essentially comprises eight key functional parts:

¢ AnAuthentication object which holds the principal, credentials and the authorities granted to the
principal. The object can also store additional information associated with an authentication request, such as
the source TCP/IP address.

e A SecurityCont ext Hol der which holdsthe Aut henti cati on object in aThr eadLocal -bound object.

e AnAuthenti cati onManager to authenticate the Aut henti cat i on object presented viathe Cont ext Hol der .

* AnAccessDeci si onManager to authorize a given operation.

* A RunAsManager to optionaly replace the Aut henti cat i on object whilst agiven operation is being
executed.

e A "secure object" interceptor, which coordinates the authentication, authorization, run-as replacement, after
invocation handling and execution of a given operation.

* AnAfterlnvocati onManager Which can modify an avj ect returned from a"secure object" invocation,
such as removing Col | ect i on elements a principal does not have authority to access.

¢ Anacesscontrol list (ACL) management package, which can be used to obtain the ACLs applicable for
domain object instances.

A "secure object" interceptor executes most of the Acegi Security key classes and in doing so deliversthe
framework's major features. Given its importance, Figure 1 shows the key relationships and concrete
implementations of Abst ract Securi tyl nt ercept or.

Z=Interfacer> =<lnterfacer= <<Interfacer=
ObjectbefinitionSource RunAshanager Authenticationbanager
N A]

b | !

LY | 2

. | k)
Secuntyittemention Evend “,\ csysets SEUSREF <Zlnterfaces=>
AT I i
-, | 4 Afterlnvocationdanager

q_"“-.___x‘k : ?{uﬁg_e.‘:-.‘:—_.—

c2uzery] I

Abstract Securtyirtementor

ecurityEnforcemeantFilts

|

-

FilterSecuritylnterce |:-ta|r

aspect..ISecurih.rlntercepta|r

A

|
LquzekE
'ilterlnvncatinﬂ

-:Q';.,sm

JoinPaint

r+1ethn:-dDefinitinnSnurceﬁdviEc

-

I
cr\]-';l gz

I|J1eth-:-d5ecuritg,rlntercept-:
I

-:Q';.,sm

+.v1ethn:u:lln1r-:-cati|:-+

-

Figure 1: The key "secure object” model

Each "secure object" interceptor (hereinafter called a " security interceptor”) works with a particular type of
"secure object”. So, what is a secure object? Secure objects refer to any type of object that can have security
applied toit. A secure object must provide some form of callback, so that the security interceptor can

Acegi Security System for Spring

Security

transparently do its work as required, and callback the object when it istime for it to proceed with the requested
operation. If secure objects cannot provide a native callback approach, awrapper needs to be written so this
becomes possible.

Each secure object hasits own package under or g. acegi securi ty. i nt er cept . Every other package in the
security system is secure object independent, in that it can support any type of secure object presented.

Only developers contemplating an entirely new way of intercepting and authorizing requests would need to use
secure objects directly. For example, it would be possible to build a new secure object to secure callsto a
messaging system that does not use Met hodl nvocat i onS. Most Spring applications will ssimply use the three
currently supported secure object types (AOP Alliance Met hodl nvocat i on, Aspectd Joi nPoi nt and web request
Fi I terlntercept or) with complete transparency.

Each of the eight key parts of Acegi Security are discussed in detail throughout this document.

1.3.2. Supported Secure Objects

As shown in the base of Figure 1, the Acegi Security System for Spring currently supports three secure objects.

Thefirst handles an AOP Alliance Met hodl nvocat i on. Thisis the secure object type used to protect Spring
beans. Developers will generally use this secure object type to secure their business objects. To make a
standard Spring-hosted bean available as a Met hodl nvocat i on, the bean is simply published through a

Pr oxyFact or yBean Or BeanNarmeAut oPr oxyCr eat or Of Def aul t Advi sor Aut oPr oxyCr eat or . MOSt Spring
developers would aready be familiar with these due to their use in transactions and other areas of Spring.

The second type is an AspectJ Joi nPoi nt . Aspectd has a particular use in securing domain object instances, as
these are most often managed outside the Spring bean container. By using AspectJ, standard constructs such as
new Person(); can be used and full security will be applied to them by Acegi Security. The

Aspect JSecuri tyl ntercept or isstill managed by Spring, which creates the aspect singleton and wiresit with
the appropriate authentication managers, access decision managers and so on.

Thethird typeisaFil terlnvocation. Thisisan object included with the Acegi Security System for Spring. It
is created by an included filter and ssimply wrapsthe HTTP Ser vi et Request , Ser vl et Response and
FilterChai n. TheFilterlnvocation enables HTTP resources to be secured. Developers do not usually need
to understand the mechanics of how this works, because they just add the filters to their web. xmi and let the
security system do its work.

1.3.3. Configuration Attributes

Every secure object can represent an infinite number of individual requests. For example, a Met hodl nvocat i on
can represent the invocation of any method with any arguments, whilst aFi | t er I nvocat i on can represent any
HTTP URL.

The Acegi Security System for Spring needs to record the configuration that applies to each of these possible
requests. The security configuration of arequest to BankManager . get Bal ance(i nt account Nunber) needsto
be very different from the security configuration of arequest to BankManager . appr oveloan(i nt

appl i cati onNunber) . Similarly, the security configuration of arequest to htt p: // some. bank. con i ndex. ht m
needs to be very different from the security configuration of htt p: / / sorme. bank. coni manage/ ti mesheet . j sp.

To store the various security configurations associated with different requests, a configuration attribute is used.
At an implementation level a configuration attribute is represented by the Confi gAt t ri but e interface. One
concrete implementation of Confi gAttri but e isprovided, Securit yConfi g, which simply storesa

100RC1

Security

configuration attribute asa stri ng.

The collection of Confi gAttri but esassociated with a particular request isheldin a
Confi gAttribut eDefinition. Thisconcrete classis simply aholder of Confi gAttri but esand does nothing
special.

When arequest is received by the security interceptor, it needs to determine which configuration attributes
apply. In other words, it needsto find the Conf i gAt t ri but eDefi ni ti on which appliesto the request. This
decision is handled by the mj ect Def i ni ti onSour ce interface. The main method provided by thisinterfaceis
public ConfigAttributeDefinition getAttributes(Cbject object),withthe dbvject being the secure
object. Recall the secure object contains details of the request, so the Qbj ect Def i ni ti onSour ce implementation
will be able to extract the details it requires to lookup the relevant Conf i gAttri but eDefi niti on.

1.4. Request Contexts

1.4.1. Historical Approach

Prior to release 0.9.0, Acegi Security used a Cont ext Hol der t0 store a Cont ext between sessions. A particular
subclass of cont ext , Secur eCont ext defined an interface used for storage of the Aut hent i cat i on object. The
Cont ext Hol der wasaThr eadLocal . A fuller discussion of the Thr eadLocal usage with Acegi Security follows
in this document. Cont ext Hol der and Secur eCont ext was removed from 0.9.0 after discussion with other
Spring developers for the sake of consistency. See for example

http://article. gmane. or g/ gmane. conp. j ava. spri ngf ramewor k. devel / 8290 and JIRA task SEC-77. This
history is mentioned as the long period Cont ext Hol der was used will likely mean that certain documentation
you encounter concerning Acegi Security might still refer to Cont ext Hol der . Generally you can just substitute
"Securi t yCont ext Hol der " for "Cont ext Hol der ", and "Securi t yCont ext " for "Secur eCont ext ", and you'll
have the primary meaning of such documentation.

1.4.2. SecurityContext

The Acegi Security System for Spring uses a Secur i t yCont ext Hol der to store the Securi t yCont ext . The
Securi t yCont ext contains asingle getter/setter for Aut hent i cati on. All Acegi Security classes query the
Securi t yCont ext Hol der for obtaining the current Securi t yCont ext (and in turn the principal).

Securi t yCont ext Hol der isaThreadLocal , meaning it is associated with the current thread of execution.

1.4.3. Context Storage

Central to Acegi Security's design is that the contents of the Secur i t yCont ext Hol der (whichissimply a

Secur it yCont ext implementation) can be stored between web requests. Thisis so that a successfully
authenticated principal can be identified on subsequent requests through the Aut hent i cat i on stored inside the
Securi t yCont ext obtained from the Securi t yCont ext Hol der . The Ht t pSessi onCont ext | nt egrati onFil ter
exists to automatically copy the contents of awell-defined H t pSessi on attribute into the

Securi t yCont ext Hol der , then at the end of each request, copy the Securi t yCont ext Hol der contents back into
the Ht t pSessi on ready for next request.

It isessential - and an extremely common error of end users - that Ht t pSessi onCont ext | nt egrati onFi | ter
appears before any other Acegi Security filter. Acegi Security filters expect to be able to modify the

Securi t yCont ext Hol der contents as they see fit, and something else (namely

Ht t pSessi onCont ext I nt egrat i onFi | t er) will store those between requestsif necessary. Thisiswhy

Ht t pSessi onCont ext | nt egr ati onFi | t er must be the first filter used.

Acegi Security System for Spring 4

Security

Y ou can define acustom Securi t yCont ext implementation be used in your application by setting the cont ext
property on the Ht t pSessi onCont ext | nt egr ati onFi | t er bean.

1.4.4. Localization

From 1.0.0, Acegi Security supports localization of exception messages that end users are likely to see. Such
exceptions include authentication failures and access being denied (authorization failures). Exceptions and
logging that is focused on developers or system deployers (including incorrect attributes, interface contract
violations, using incorrect constructors, startup time validation, debug-level logging) etc are not localized and
instead are hard-coded in English within Acegi Security's code.

Shipping inthe acegi - securi ty-xx. j ar insidethe or g. acegi securi ty package isanessages. properti es
file. This should be referred to by your Appl i cati onCont ext , as Acegi Security classes implement Spring's
MessageSour ceAvar e interface and expect the message resolver to be dependency injected at application
context startup time. Usually all you need to do is register a bean inside your application context to refer to the
messages. An example is shown below:

<bean i d="nessageSour ce"

cl ass="org. spri ngf ramewor k. cont ext . support . Rel oadabl eResour ceBundl eMessageSour ce" >
<property name="basenane"><val ue>or g/ acegi security/ messages</val ue></ property>

</ bean>

Thenessages. properti es ishamed in accordance with standard resource bundles and represents the default
language supported by Acegi Securtiy messages. This default fileisin English. If you do not register a message
source, Acegi Security will still work correctly and fallback to hard-coded English versions of the messages.

If you wish to customize the mressages. properti es file, or support other languages, you should copy thefile,
rename it accordingly, and register it inside the above bean definition. There are not alarge number of message
keysinside thisfile, so localization should not be considered amajor initiative. If you do perform localization
of thisfile, please consider sharing your work with the community by logging a JIRA task and attaching your
appropriately-named localized version of nessages. properti es.

Rounding out the discussion on localization is the Spring Thr eadLocal known as

org. spri ngframewor k. cont ext . i 18n. Local eCont ext Hol der . Y ou should set the Local eCont ext Hol der to
represent the preferred Local e of each user. Acegi Security will attempt to locate a message from the message
source using the Local e obtained from this Thr eadLocal . Please refer to Spring documentation for further
details on using Local eCont ext Hol der and the helper classes that can automatically set it for you (eg

Accept Header Local eResol ver, Cooki eLocal eResol ver, Fi xedLocal eResol ver, Sessi onLocal eResol ver etc)

1.5. Security Interception

1.5.1. All Secure Objects

Asdescribed in the High Level Design section, each secure object has its own security interceptor which is
responsible for handling each request. Handling involves a number of operations:

1. Storethe configuration attributes that are associated with each secure request.

2. Extract the Confi gAttri but eDefi ni tion that appliesto the request from the relevant
bj ect Defi ni ti onSource.

100RC1

Security

3. Obtainthe Aut hent i cat i on object from the Securi t yCont ext , which isheld in the
Securit yCont ext Hol der.

4. PasstheAut henti cati on Object to the Aut hent i cat i onManager , update the Securi t yCont ext Hol der with
the response.

5. PasstheAut henti cati on object, the Confi gAttri but eDefi ni ti on, and the secure object to the
AccessDeci si onManager .

6. PasstheAut henti cati on object, the Confi gAttri but eDefi ni ti on, and the secure object to the
RunAsManager .

7. If the RunAsManager returnsanew Aut henti cat i on object, update the Securi t yCont ext Hol der withit.
8. Proceed with the request execution of the secure object.

9. If the RunAsManager earlier returned a new Aut hent i cat i on Object, update the Securi t yCont ext Hol der
with the Aut hent i cat i on object that was previoudly returned by the Aut hent i cat i onManager .

10. If anAfterinvocati onManager isdefined, passit the result of the secure object execution so that it may
throw an AccessDeni edExcept i on or mutate the returned object if required.

11. Return any result received from the Af t er I nvocat i onManager , Of if N0 Af t er | nvocat i onManager IS
defined, simply return the result provided by the secure object execution.

Whilst this may seem quite involved, don't worry. Devel opersinteract with the security process by simply
implementing basic interfaces (such as AccessDeci si onvanager), which are fully discussed below.

The Abst ract Securi tyl nt er cept or handles the majority of the flow listed above. As shown in Figure 1, each
secure object hasits own security interceptor which subclasses Abst ract Securi tyl nt er cept or . Each of these
secure object-specific security interceptors are discussed below.

1.5.2. AOP Alliance (MethodInvocation) Security Interceptor

To secure Met hodl nvocat i onS, developers simply add a properly configured Met hodSecuri t yl nt er cept or into
the application context. Next the beans requiring security are chained into the interceptor. This chaining is
accomplished using Spring’s Pr oxyFact or yBean Of BeanNanmeAut oPr oxyCr eat or , as commonly used by many
other parts of Spring (refer to the sample application for examples). Alternatively, Acegi Security provides a
Met hodDef i ni ti onSour ceAdvi sor which may be used with Spring's Def aul t Advi sor Aut oPr oxyCr eat or tO
automatically chain the security interceptor in front of any beans defined against the

Met hodSecuri tyl nter cept or . The Met hodSecuri tyl nt er cept or itself is configured as follows:

<bean i d="bankManager Security"
cl ass="org. acegi security.intercept.nethod. aopal | i ance. Met hodSecurityl nterceptor">
<property nanme="val i dat eConfi gAttri butes"><val ue>true</val ue></property>
<property nanme="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/></property>
<property nanme="runAsManager"><ref bean="runAsManager"/></property>
<property name="afterlnvocati onManager"><ref bean="afterlnvocati onManager"/></property>
<property name="obj ect Defi niti onSource">
<val ue>
org. acegi security. cont ext.BankManager . del et e* =RCOLE_SUPERVI SOR, RUN_AS_SERVER
org. acegi security. cont ext. BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR, BANKSECURI TY_CUSTOVER, RUN_AS_SERVEF
</ val ue>
</ property>
</ bean>

Acegi Security System for Spring 6

Security

As shown above, the Met hodSecuri t yl nt er cept or isconfigured with areferenceto an

Aut hent i cat i onManager , AccessDeci si onManager and RunAsManager , Which are each discussed in separate
sections below. In this case we've also defined an Af t er I nvocat i onManager , although thisis entirely optional.
The Met hodSecuri tyl ntercept or isaso configured with configuration attributes that apply to different
method signatures. A full discussion of configuration attributesis provided in the High Level Design section of
this document.

The Met hodSecuri tyl ntercept or can be configured with configuration attributes in three ways. Thefirst isvia
a property editor and the application context, which is shown above. The second is via defining the
configuration attributesin your source code using Jakarta Commons Attributes or Java 5 Annotations. The third
isviawriting your own Qbj ect Def i ni ti onSour ce, although thisis beyond the scope of this document.
Irrespective of the approach used, the tbj ect Def i ni ti onSour ce isresponsible for returning a

Confi gAttri but eDefi nition object that contains all of the configuration attributes associated with asingle
secure method.

It should be noted that the Met hodSecuri t yl nt er cept or . set Obj ect Defi ni ti onSour ce() method actually
expects an instance of Met hodDef i ni ti onSour ce. Thisisamarker interface which subclasses

Qbj ect Defi ni ti onSour ce. It Ssimply denotes the vj ect Def i ni ti onSour ce understands Met hodl nvocat i onsS.
In the interests of simplicity we'll continue to refer to the Met hodDef i ni ti onSour ce asan

bj ect Defi ni ti onSour ce, asthedistinction is of little relevance to most users of the

Met hodSecurityl nterceptor.

If using the application context property editor approach (as shown above), commas are used to delimit the
different configuration attributes that apply to a given method pattern. Each configuration attribute is assigned
into its own Securi t yConfi g object. The Securi t yConf i g object is discussed in the High Level Design section.

If you are using the Jakarta Commons Attributes approach, your bean context will be configured differently:

<bean id="attributes" class="org.springfranework. netadata. commons. CormonsAttri butes"/>
<bean i d="obj ect Defi ni ti onSour ce"
cl ass="org. acegi security.intercept.nethod. Met hodDefi nitionAttributes">
<property name="attributes"><ref |ocal ="attributes"/></property>
</ bean>

<bean i d="bankManager Security"
cl ass="org. acegi security.intercept.nethod. aopal | i ance. Met hodSecurityl nterceptor">
<property nanme="val i dat eConfi gAttri butes"><val ue>fal se</val ue></ property>
<property nanme="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/ ></ property>
<property name="runAsManager"><ref bean="runAsManager"/></property>
<property nanme="obj ectDefi nitionSource"><ref bean="object Defi nitionSource"/></property>
</ bean>

In addition, your source code will contain Jakarta Commons Attributes tags that refer to a concrete
implementation of Confi gAttri but e. The following example uses the Secur i t yConfi g implementation to
represent the configuration attributes, and results in the same security configuration as provided by the property
editor approach above:

public interface BankManager {

/**
* @dbecurityConfig("ROLE_SUPERVI SCR")
* @@ecurityConfig("RUN_AS SERVER')
*/

public void del eteSonething(int id);

/**
* @dbecurityConfig("ROLE_SUPERVI SCR")

* @oBecurityConfig("RUN_AS SERVER')
S

100RC1

Security

public void del eteAnother(int id);

/**
* @dbecurityConfig("ROLE TELLER")
* @gpecurityConfig("ROLE_SUPERVI SOR")
* @@pecurityConfig(" BANKSECURI TY_CUSTOMER")
* @gpecurityConfig("RUN_AS_SERVER")
*/
public float getBalance(int id);

If you are using the Spring Security Java 5 Annotations approach, your bean context will be configured as
follows:

<bean id="attributes" class="org.acegisecurity.annotation. SecurityAnnotati onAttributes"/>
<bean i d="obj ect Defi ni ti onSour ce"
cl ass="org. acegi security.intercept.nethod. Met hodDefiniti onAttributes">
<property name="attributes"><ref |ocal ="attributes"/></property>
</ bean>

<bean i d="bankManager Security"
cl ass="org. acegi security.intercept.nethod. aopal | i ance. Met hodSecurityl nterceptor">
<property name="val i dateConfi gAttri butes"><val ue>fal se</val ue></ property>
<property name="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/></property>
<property name="runAsManager"><ref bean="runAsManager"/></property>
<property nanme="obj ect Defi niti onSource"><ref bean="object Defi niti onSource"/></property>
</ bean>

In addition, your source code will contain the Acegi Java 5 Security Annotations that represent the
Confi gAttri but e. The following example uses the @ecur ed annotations to represent the configuration
attributes, and results in the same security configuration as provided by the property editor approach:

i nport org.acegi security.annotation. Secured

public interface BankManager {

/ * %

* Del et e sonet hi ng

*/
@ecur ed({" ROLE_SUPERVI SOR', "RUN_AS_SERVER' })
public void del eteSonething(int id);

/ * %

* Del ete anot her

*/
@ecur ed({" ROLE_SUPERVI SOR", " RUN_AS_SERVER' })
public void del eteAnother(int id);

[**

* Cet bal ance

*/

@ecur ed({"ROLE_TELLER", " ROLE_SUPERVI SOR", " BANKSECURI TY_CUSTOMER", " RUN_AS_SERVER' })
public float getBalance(int id);

Y ou might have noticed the val i dat eConfi gAt tri but es property in the above Met hodSecuri tyl nt er cept or
examples. When set to t r ue (the default), at startup time the Met hodSecuri t yl nt er cept or Will evaluateif the
provided configuration attributes are valid. It does this by checking each configuration attribute can be
processed by either the AccessDeci si onvanager or the RunAsManager . If neither of these can process agiven
configuration attribute, an exception is thrown. If using the Jakarta Commons Attributes method of
configuration, you should set val i dat eConfi gAttri butes tOf al se.

Acegi Security System for Spring

Security

1.5.3. Aspectd (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differencesin this section.

The AspectJ interceptor is named Aspect JSecuri tyl nt er cept or . Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor via proxying, the
Aspect JSecuri tyl ntercept or isSweaved in viathe Aspectd compiler. It would not be uncommon to use both
types of security interceptors in the same application, with Aspect JSecuri tyl nt er cept or being used for
domain object instance security and the AOP Alliance Met hodSecuri tyl nt er cept or being used for services
layer security.

Let'sfirst consider how the Aspect JSecuri tyl nter cept or isconfigured in the Spring application context:

<bean i d="bankManager Security"
cl ass="org. acegi security.intercept.nethod. aspectj.AspectJSecuritylnterceptor">
<property name="val i dateConfi gAttri butes"><val ue>true</val ue></property>
<property name="aut henti cati onManager"><ref bean="aut henti cati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/ ></ property>
<property name="runAsManager"><ref bean="runAsManager"/></property>
<property nanme="afterlnvocati onManager"><ref bean="afterlnvocati onManager"/></property>
<property name="obj ect Defi nitionSource">
<val ue>
org. acegi security. cont ext.BankManager . del et e* =ROLE_SUPERVI SOR, RUN_AS_SERVER
or g. acegi security. cont ext.BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR, BANKSECURI TY_CUSTOVER, RUN_AS_SERVEF
</ val ue>
</ property>
</ bean>

Asyou can see, aside from the class name, the Aspect JSecuri tyl ntercept or isexactly the same asthe AOP
Alliance security interceptor. Indeed the two interceptors can share the same obj ect Def i ni ti onSour ce, asthe
oj ect Defi ni ti onSour ce Workswith j ava. | ang. ref | ect . Met hods rather than an AOP library-specific class.
Of course, your access decisions have access to the relevant AOP library-specific invocation (ie

Met hodl nvocat i on Of Joi nPoi nt) and as such can consider arange of addition criteriawhen making access
decisions (such as method arguments).

Next you'll need to define an AspectJ aspect . For example:

package org. acegi security. sanpl es. aspectj ;

i nport org.acegi security.intercept. nmethod. aspectj.AspectJSecuritylnterceptor;
i nport org.acegi security.intercept.nethod. aspectj . Aspect JCal | back
i mport org.springframework. beans. factory. I nitializingBean

publ i c aspect Donai nbj ect | nstanceSecurityAspect inplenments InitializingBean {
private AspectJSecuritylnterceptor securitylnterceptor;

poi nt cut domai nCbj ect | nst anceExecution(): target(Persistabl eEntity)
&& execution(public * *(..)) && !within(Domai nObj ectl|nstanceSecurityAspect);

bj ect around(): domai nObj ect | nstanceExecution() {
if (this.securitylnterceptor != null) {
Aspect JCal | back cal | back = new AspectJCal | back() {
public Object proceedWthObject() {
return proceed();

}
b
return this.securitylnterceptor.invoke(thisJoinPoint, callback);
} else {
return proceed();
}

}

public AspectJSecuritylnterceptor getSecuritylnterceptor() {

100RC1

Security

return securitylnterceptor;

}

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) {
this.securitylnterceptor = securitylnterceptor;

}
public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new |11 egal Argunent Excepti on("securitylnterceptor required");
}

In the above example, the security interceptor will be applied to every instance of Per si st abl eEnti ty, which
is an abstract class not shown (you can use any other class or poi nt cut expression you like). For those curious,
Aspect JCal | back isheeded because the proceed(); statement has special meaning only within an ar ound()
body. The Aspect JSecuri tyl nt er cept or callsthis anonymous Aspect JCal | back class when it wants the
target object to continue.

Y ou will need to configure Spring to load the aspect and wire it with the Aspect JSecuri tyl nterceptor. A
bean declaration which achieves thisis shown below:

<bean i d="domai nObj ect | nst anceSecurityAspect"
cl ass="org. acegi security. sanpl es. aspectj . Domai nQbj ect | nst anceSecurit yAspect "
factory-net hod="aspect O " >
<property name="securitylnterceptor"><ref bean="aspectJSecuritylnterceptor"/></property>
</ bean>

That'sit! Now you can create your beans from anywhere within your application, using whatever means you
think fit (eg new Person() ;) and they will have the security interceptor applied.

1.5.4. FilterInvocation Security Interceptor

To secureFi | ter I nvocat i onS, developers need to add afilter to their web. xm that delegatesto the
Securi tyEnforcenent Fi | ter. A typical configuration example is provided below:

<filter>
<filter-name>Acegi HITP Request Security Filter</filter-name>
<filter-class>org.acegisecurity.util.FilterToBeanProxy</filter-class>
<init-paranp
<par am nane>t ar get Cl ass</ par am nane>
<par am val ue>or g. acegi security.intercept.web. SecurityEnforcenentFilter</param val ue>
</init-parans
</filter>

<filter-mappi ng>
<filter-nane>Acegi HTTP Request Security Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

Notice that the filter is actually aFi | t er ToBeanPr oxy. Most of the filters used by the Acegi Security System
for Spring use this class. Refer to the Filters section to learn more about this bean.

In the application context you will need to configure three beans:

<bean i d="securityEnforcenmentFilter"

cl ass="org. acegi security.intercept.web. SecurityEnforcementFilter">
<property name="filterSecuritylnterceptor"><ref bean="filterlnvocationlnterceptor"/></property>
<property nane="aut henticati onEntryPoi nt"><ref bean="authenticati onEntryPoint"/></property>

</ bean>

Acegi Security System for Spring 10

Security

<bean i d="aut henticati onEntryPoint"

cl ass="org. acegi security. ui.webapp. Aut henti cati onProcessi ngFi | ter EntryPoi nt">
<property name="| ogi nFor nr| " ><val ue>/ acegi |l ogi n. j sp</val ue></ property>
<property name="forceHttps"><val ue>f al se</val ue></ property>

</ bean>

<bean id="filterlnvocationlnterceptor"
cl ass="org. acegi security.intercept.web. FilterSecuritylnterceptor">
<property name="aut henti cati onManager"><ref bean="aut henti cati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/></property>
<property nanme="runAsManager"><ref bean="runAsManager"/></property>
<property nanme="obj ect Definiti onSource">
<val ue>
CONVERT_URL_TO_LOWERCASE_BEFORE_COVPARI SON
\ Al secur e/ super/ . *\ Z=ROLE_WE_DONT_HAVE
\ Al secur e/ . *\ Z=ROLE_SUPERVI SOR, ROLE_TELLER
</ val ue>
</ property>
</ bean>

The Aut hent i cat i onEnt ryPoi nt Will be called if the user requests a secure HT TP resource but they are not
authenticated. The class handles presenting the appropriate response to the user so that authentication can
begin. Three concrete implementations are provided with the Acegi Security System for Spring:

Aut hent i cat i onPr ocessi ngFi | t er Ent ryPoi nt for commencing aform-based authentication,

Basi cProcessi ngFi | ter Ent ryPoi nt for commencing a HT TP Basic authentication process, and
CasProcessi ngFi | t er Ent ryPoi nt for commencing aY ale Central Authentication Service (CAS) login. The
Aut hent i cat i onProcessi ngFi | t er Ent r yPoi nt and CasPr ocessi ngFi | t er Ent r yPoi nt have optional
properties related to forcing the use of HTTPS, so please refer to the JavaDocs if you require this.

The Por t Mapper provides information on which HTTPS ports correspond to which HTTP ports. Thisis used by
the Aut hent i cati onProcessi ngFi | t er Ent ryPoi nt and several other beans. The default implementation,

Por t Mapper | mpl , knows the common HTTP ports 80 and 8080 map to HTTPS ports 443 and 8443 respectively.
Y ou can customise this mapping if desired.

The Securi tyEnf orcement Fi | ter primarily provides session management support and initiates authentication
when required. It delegates actual Fi | t er I nvocat i on Security decisions to the configured
FilterSecuritylnterceptor.

Like any other security interceptor, theFi I t er Securi tyl nt er cept or requires areferenceto an

Aut hent i cat i onManager , AccessDeci si onManager and RunAsManager , Which are each discussed in separate
sections below. TheFi | ter Securityl nterceptor isaso configured with configuration attributes that apply to
different HTTP URL requests. A full discussion of configuration attributesis provided in the High Level
Design section of this document.

TheFilterSecuritylnterceptor can be configured with configuration attributes in two ways. Thefirst isvia
aproperty editor and the application context, which is shown above. The second is viawriting your own

vj ect Def i ni ti onSour ce, athough thisis beyond the scope of this document. Irrespective of the approach
used, the bj ect Def i ni ti onSour ce isresponsible for returning aConfi gAt t ri but eDef i ni ti on oObject that
contains al of the configuration attributes associated with a single secure HTTP URL.

It should be noted that the Fi | t er Securi tyl nt er cept or. set Obj ect Defi ni ti onSour ce() method actually
expects an instance of Fi | t er | nvocat i onDef i ni ti onSour ce. Thisisamarker interface which subclasses
Qbj ect Defi ni ti onSour ce. It Simply denotes the bj ect Def i ni ti onSour ce understandsFi | t er I nvocat i onS.
In the interests of smplicity we'll continue to refer to theFi | t er I nvocat i onDef i ni ti onSour ce asan

bj ect Defi ni ti onSour ce, asthedistinction is of little relevance to most users of the
FilterSecuritylnterceptor.

If using the application context property editor approach (as shown above), commas are used to delimit the
different configuration attributes that apply to each HTTP URL. Each configuration attribute is assigned into its

100RC1

Security

own Securi tyConfi g object. The Securi t yConfi g object is discussed in the High Level Design section. The
Qbj ect Defi ni ti onSour ce created by the property editor, Fi | t er I nvocat i onDef i ni ti onSour ce, matches
configuration attributes against Fi | t er | nvocat i ons based on expression evaluation of the request URL. Two
standard expression syntaxes are supported. The default isto treat all expressions as regular expressions.
Alternatively, the presence of a PATTERN_TYPE_APACHE_ANT directive will cause all expressions to be treated as
Apache Ant paths. It is not possible to mix expression syntaxes within the same definition. For example, the
earlier configuration could be generated using Apache Ant paths as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. acegi security.intercept.web. FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="accessDeci si onManager " ><ref bean="accessDeci si onManager"/></property>
<property name="runAsManager"><ref bean="runAsManager"/></property>
<property name="obj ect Defi nitionSource">
<val ue>
CONVERT_URL_TO_LOWERCASE_BEFORE_COVPARI SON
PATTERN_TYPE_APACHE_ANT
/ secur e/ super/ **=ROLE_WE_DONT_HAVE
/ secur e/ **=ROLE_SUPERVI SOR, ROLE_TELLER
</ val ue>
</ property>
</ bean>

Irrespective of the type of expression syntax used, expressions are always evaluated in the order they are
defined. Thusit isimportant that more specific expressions are defined higher in the list than less specific
expressions. Thisisreflected in our example above, where the more specific / secur e/ super/ pattern appears
higher than the less specific/ secur e/ pattern. If they were reversed, the/ secur e/ pattern would always match
and the/ secur e/ super/ pattern would never be evaluated.

The special keyword CONVERT_URL_TO LONERCASE_BEFORE_COMPARI SON causes the

Fil terlnvocationDefinitionSource toautomaticaly convert arequest URL to lowercase before comparison
against the expressions. Whilst by default the case of the request URL is not converted, it is generally
recommended to use CONVERT_URL_TO LOAERCASE_BEFORE_COVPARI SON and write each expression assuming
lowercase.

Aswith other security interceptors, the val i dat eConfi gAttri but es property isobserved. When settot r ue
(the default), at startup timetheFi | t er Securi tyl nt er cept or Will evaluate if the provided configuration
attributes are valid. It does this by checking each configuration attribute can be processed by either the
AccessDeci si onManager oOr the RunAsManager . If neither of these can process a given configuration attribute,
an exception is thrown.

1.6. Authentication

1.6.1. Authentication Requests

Authentication requires away for client code to present its security identification to the Acegi Security System
for Spring. Thisistherole of the Aut hent i cat i on interface. The Aut hent i cat i on interface holds three
important objects: the principal (the identity of the caller), the credentials (the proof of the identity of the caller,
such as a password), and the authorities that have been granted to the principal. The principal and its credentials
are populated by the client code, whilst the granted authorities are populated by the Aut hent i cat i onManager .

Acegi Security System for Spring 12

Security

=<lnterfaces> <lnterfacer>
<<Interfaces==
. Authentication Authenticationtdanager
GrantedfAutharity =" _ _ _
j K Zysers |[sethuthenticatedlizfuthenticated: boolean): void authentic ate{authentication: Authentication) : Authentication
getfuthority’y : String
A isfwthenticated) : boolean |
<<redlizes= getduthorities]) : GrantedAuthaority[] <<lea|iile>>

5 rantedautharitelmp| getCredentialsl : Object L
i f Abst@ctiuthentication/fanager

getbetaila] : Object
getPrincipal): Object authenticatefauthentication: Authentication) : Authenticatio

doduthentication Futhentication : Avthentication) Authenticah

<<reallﬁle bl
|,4bsfrsctﬂn‘apterﬂuthenﬁcaﬁon TohenI_D:I AbstactAuthentication Toker Q_\
|PrincipalAcegiUserTokenl |CasAuthenticationToken| |UsemamePasswordAuthentlcatlonToken |TestingﬁuthenticationTokenl
T T

+|+ +|+ +|+ +|+

|AuthElyAdapterProuider| |CasAuthenticationPrmriderI |DaoAuthenticationF’m\riderI |PassuuoldDaoAuthenticationF'm\riderl |TestingAuthenticationPro\riderI
Y T I -

T
i | I | -

i

Yoo | |
Zargalizer= 2<rpalizes= 2arpalizess 2ergalizess - -
K | 1 | L= T d<raalizess Froviderbdanager

i | 1 I -) o
setP roviders(newlist: List) : woid
“<Interface>> getFroviders) ; List
afterPropediesSet]) : woid
_____________ dofuthenticationfauthentication: Authentication) : Authentigatic

supportsiauthentication: Class) : boolean Seusesr checkifalidList]listToCheck: List) @ vaoid

AuthenticationProvider

authenticatetauthentication: Authentication) : Authentication

Figure 3: Key Authentication Architecture

Asshown in Figure 3, the Acegi Security System for Spring includes several concrete Aut hent i cati on
implementations:

e User namePasswor dAut hent i cat i onToken allows a username and password to be presented as the principal
and credential s respectively. It isalso what is created by the HTTP Session Authentication system.

e TestingAut henticati onToken facilitates unit testing by automatically being considered an authenticated
object by its associated Aut hent i cat i onProvi der.

* RunAsUser Token isused by the default run-as authentication replacement implementation. Thisis discussed
further in the Run-As Authentication Replacement section.

e CasAut henticationToken iSused to represent asuccessful Yale Central Authentication Service (CAS)
authentication. Thisis discussed further in the CAS section.

* Princi pal Acegi User Token and Jet t yAcegi User Token implement Aut hByAdapt er (a subclass of
Aut hent i cat i on) and are used whenever authentication is completed by Acegi Security System for Spring
container adapters. Thisis discussed further in the Container Adapters section.

The authorities granted to a principal are represented by the Gr ant edAut hori ty interface. The
G ant edAut hor i ty interfaceis discussed at length in the Authorization section.

1.6.2. Authentication Manager

Asdiscussed in the Security Interception section, the Abst ract Securi tyl nt er cept or extractsthe
Aut hent i cat i on object from the Securi t yCont ext inthe Securi t yCont ext Hol der . Thisis then passed to an
Aut hent i cat i onManager . The Aut henti cati onManager interfaceisvery simple:

public Authentication authenticate(Authentication authentication) throws AuthenticationException;

Implementations of Aut hent i cat i onManager are required to throw an Aut hent i cat i onExcept i on should
authentication fail, or return afully populated Aut hent i cat i on object. In particular, the returned

Aut hent i cat i on object should contain an array of Grant edAut hori ty objects. The Securi tyl nter cept or
places the populated Aut hent i cat i on object back in the Securi t yCont ext inthe Securi t yCont ext Hol der,
overwriting the original Aut henti cat i on object.

100RC1

Security

The Aut hent i cat i onExcept i on hasanumber of subclasses. The most important are

BadCr edent i al sExcept i on (an incorrect principal or credentials), Di sabl edExcept i on and LockedExcept i on.
The latter two exceptions indicate the principal was found, but the credentials were not checked and
authentication is denied. An Aut hent i cat i onSer vi ceExcept i on iSalso provided, which indicates the
authentication system could not process the request (eg a database was unavailable).

Aut henti cati onExcepti on alSO hasaCredenti al sExpi r edExcept i on and Accoungt Expi r edExcepti on
subclass, athough these are less commonly used.

1.6.3. Provider-Based Authentication

Whilst the basic Aut hent i cat i on and Aut hent i cat i onManager interfaces enable usersto develop their own
authentication systems, users should consider using the provider-based authentication packages provided by the
Acegi Security System for Spring. The key class, Pr ovi der Manager , is configured via the bean context with a
list of Aut henti cati onProvi derS:

<bean id="aut henticati onManager" cl ass="org. acegi security. providers. Provi der Manager ">
<property name="providers">
<list>
<ref bean="daoAut henti cati onProvider"/>
<ref bean="someQ her Aut henti cati onProvi der"/>
</list>
</ property>
</ bean>

Provi der Manager callsaseries of registered Aut hent i cat i onProvi der implementations, until one is found that
indicatesit is able to authenticate a given Aut hent i cat i on class. When the first compatible

Aut hent i cati onProvi der islocated, it is passed the authentication request. The Aut hent i cat i onPr ovi der will
then either throw an Aut hent i cati onExcepti on or return afully populated Aut henti cat i on object.

Note the Pr ovi der Manager may throw a Pr ovi der Not FoundExcept i on (a subclass of
Aut hent i cat i onExcept i on) if it none of the registered Aut hent i cat i onPr ovi der s can validate the
Aut hent i cat i on object.

The Provi der Manager also has several other important functions. It integrates with concurrent session handling
supoprt, and it also converts any exceptions thrown by an Aut hent i cat i onProvi der and publishes a suitable
event. The eventsthat are published are located in the or g. acegi security. event . aut henti cati on package
and advanced users can map different exceptions to different events by configuring the

Provi der Manager . except i onMappi ngs property (generally thisis not required and the default event
propagation is appropriate - especially as events will smply beignored if you don't have an

Appl i cati onLi st ener configured in the Appl i cat i onCont ext).

Several Aut henti cati onProvi der implementations are provided with the Acegi Security System for Spring:

* TestingAuthenticationProvider isableto authenticate aTesti ngAut henti cati onToken. Thelimit of its
authentication is simply to treat whatever is contained in the Test i ngAut hent i cat i onToken asvalid. This
makes it ideal for use during unit testing, as you can create an Aut hent i cat i on object with precisely the
G ant edAut hor i ty objects required for calling a given method. Y ou definitely would not register this
Aut hent i cat i onProvi der on aproduction system.

* DaoAut henti cati onProvi der isableto authenticate a User nanePasswor dAut hent i cat i onToken by
accessing an authentication respository via a data access object. Thisis discussed further below, asit isthe
main way authentication isinitially handled.

* RunAsl npl Aut hent i cati onProvi der isableto authenticate a RunAsUser Token. Thisis discussed further in
the Run-As Authentication Replacement section. Y ou would not register this Aut hent i cat i onProvi der if

Acegi Security System for Spring 14

Security

you were not using run-as replacement.

e Aut hByAdapt er Provi der isable to authenticate any Aut hByAdapt er (asubclass of Aut hent i cati on used
with container adapters). Thisis discussed further in the Container Adapters section. Y ou would not register
this Aut hent i cat i onProvi der if you were not using container adapters.

* CasAut henti cationProvi der isableto authenticate Yae Central Authentication Service (CAS) tickets.
Thisisdiscussed further in the CAS Single Sign On section.

e JaasAut henti cati onProvi der isableto delegate authentication requeststo a JAAS Logi nModul e. Thisis
discussed further below.

1.6.4. Concurrent Session Support

Acegi Security is able to stop the same principal authenticating to the same web application multiple times
concurrently. Put differently, you can stop user "Batman" from logging into aweb application twice at the same
time.

To use concurrent session support, you'll need to add the following to web.xml:

<li st ener>
<l i stener-class>org. acegi security. ui.session. HtpSessi onEvent Publ i sher</1i stener-cl ass>
</listener>

In addition, you will need to add the or g. acegi securi ty. concurrent. Concurrent Sessi onFi | t er t0 your
Fi | t er Chai nProxy. The ConcurrentSessionFilter requires only one property, sessionRegistry, which generally
points to an instance of Sessi onRegi stryl npl .

Theweb. xn Ht t pSessi onEvent Publ i sher causes an Appl i cati onEvent to be published to the Spring
Appl i cati onCont ext every timeaHt t pSessi on commences or terminates. Thisis critical, asit allows the
Sessi onRegi st ryl npl to be notified when a session ends.

Y ou will also need to wire up the Concur r ent Sessi onControl | er I npl and refer to it from your
Pr ovi der Manager bean:

<bean id="aut henti cati onManager" cl ass="org. acegi security. provi ders. Provi der Manager ">
<property name="providers">
<l-- your providers go here -->
</ property>
<property name="sessi onController"><ref bean="concurrent Sessi onController"/></property>
</ bean>

<bean i d="concurrent Sessi onControl |l er"
cl ass="org. acegi security.concurrent. Concurrent Sessi onControl |l erl npl">
<property name="nmaxi nunBessi ons" ><val ue>1</ val ue></ property>
<property name="sessi onRegi stry"><ref |ocal ="sessi onRegi stry"/></property>
</ bean>

<bean i d="sessi onRegi stry" class="org. acegi security.concurrent. Sessi onRegi strylnpl"/>

1.6.5. Data Access Object Authentication Provider

The Acegi Security System for Spring includes a production-quality Aut hent i cati onProvi der implementation
called DaoAut hent i cat i onProvi der . This authentication provider is able to authenticate a

User nanePasswor dAut hent i cat i onToken by obtaining authentication details from a data access object
configured at bean creation time:

100RC1

Security

<bean i d="daoAut henti cati onProvi der"

cl ass="org. acegi security. providers. dao. DaoAut henti cati onProvi der" >
<property nanme="userDet ai | sServi ce"><ref bean="i nMenoryDaol npl "/ ></ property>
<property nanme="salt Source"><ref bean="salt Source"/></property>
<property nanme="passwor dEncoder " ><ref bean="passwordEncoder"/></property>

</ bean>

The Passwor dEncoder and Sal t Sour ce are optional. A Passwor dEncoder provides encoding and decoding of
passwords obtained from the authentication repository. A sal t Sour ce enables the passwords to be popul ated
with a"salt", which enhances the security of the passwords in the authentication repository. Passwor dEncoder
implementations are provided with the Acegi Security System for Spring covering MD5, SHA and cleartext
encodings. Two Sal t Sour ce implementations are also provided: Syst emW deSal t Sour ce which encodes all
passwords with the same salt, and Ref | ect i onSal t Sour ce, Which inspects a given property of the returned
User Det ai | s object to obtain the salt. Please refer to the JavaDocs for further details on these optional features.

In addition to the properties above, the DaoAut hent i cat i onPr ovi der supports optional caching of

User Det ai | s objects. The User Cache interface enables the DaoAut hent i cat i onProvi der to place a

User Det ai | s object into the cache, and retrieve it from the cache upon subsequent authentication attempts for
the same username. By default the DaoAut hent i cati onProvi der usesthe Nul | User Cache, which performs no
caching. A usable caching implementation is also provided, EnCacheBasedUser Cache, which is configured as
follows:

<bean i d="daoAut henti cati onProvi der"

cl ass="org. acegi security. providers. dao. DaoAut henti cati onProvi der" >
<property nanme="userDetail sServi ce"><ref bean="userDetail sService"/></property>
<property name="user Cache"><ref bean="user Cache"/></property>

</ bean>

<bean i d="cacheManager" cl ass="org. spri ngframework. cache. ehcache. EnCacheManager Fact or yBean" >
<property nanme="configLocation">
<val ue>cl asspat h: / ehcache-f ai | saf e. xm </ val ue>
</ property>
</ bean>

<bean i d="user CacheBackend" cl ass="org. spri ngfranework. cache. ehcache. EnCacheFact or yBean" >
<property nanme="cacheManager">
<ref |ocal ="cacheManager"/>
</ property>
<property name="cacheNane">
<val ue>user Cache</ val ue>
</ property>
</ bean>

<bean i d="user Cache" cl ass="org. acegi security. providers. dao. cache. EhCacheBasedUser Cache" >
<property name="cache"><ref |ocal ="user CacheBackend"/></property>
</ bean>

All Acegi Security EH-CACHE implementations (including EhCacheBasedUser Cache) require an EH-CACHE
Cache object. The Cache object can be obtained from wherever you like, although we recommend you use
Spring's factory classes as shown in the above configuration. If using Spring's factory classes, please refer to
the Spring documentation for further details on how to optimise the cache storage location, memory usage,
eviction policies, timeouts etc.

For aclassto be able to provide the DaoAut hent i cati onProvi der With access to an authentication repository, it
must implement the User Det ai | sSer vi ce interface:

public UserDetails |oadUserByUsernane(String usernane) throws UsernaneNot FoundExcepti on
Dat aAccessExcepti on

Acegi Security System for Spring 16

Security

The User Det ai | s isan interface that provides getters that guarantee non-null provision of basic authentication
information such as the username, password, granted authorities and whether the user is enabled or disabled. A
concrete implementation, User , is also provided. Acegi Security users will need to decide when writing their
User Det ai | sSer vi ce What type of User Det ai | s to return. In most cases User will be used directly or
subclassed, although special circumstances (such as object relational mappers) may require users to write their
own User Det ai | s implementation from scratch. User Det ai | s IS often used to store additional principal-related
properties (such as their telephone number and email address), so they can be easily used by web views.

Given User Det ai | sServi ce 1SS0 sSimple to implement, it should be easy for users to retrieve authentication
information using a persistence strategy of their choice.

A design decision was made not to support account locking in the DacAut hent i cat i onPr ovi der , as doing so
would have increased the complexity of the User Det ai | sSer vi ce interface. For instance, a method would be
required to increase the count of unsuccessful authentication attempts. Such functionality could be easily
provided by leveraging the application event publishing features discussed below.

DaoAut hent i cati onProvi der returnsan Aut hent i cati on object which in turn hasitspri nci pal property set.
The principal will be either ast ri ng (which is essentially the username) or aUser Det ai | s object (which was
looked up from the User Det ai | sSer vi ce). By default the User Det ai | s isreturned, as this enables applications
to add extra properties potentially of usein applications, such as the user's full name, email address etc. If using
container adapters, or if your applications were written to operate with st ri ngs (as was the case for releases
prior to Acegi Security 0.6), you should set the DaoAut hent i cat i onProvi der . f or cePri nci pal AsStri ng
property to t r ue in your application context.

1.6.6. In-Memory Authentication

Whilst it is easy to use the DaoAut hent i cat i onProvi der and create a custom User Det ai | sServi ce
implementation that extracts information from a persistence engine of choice, many applications do not require
such complexity. One aternative is to configure an authentication repository in the application context itself
using the I nMenor yDaol npl :

<bean i d="i nMenoryDaol npl " cl ass="org. acegi security.userdetails. menory. | nMenor yDaol npl ">
<property name="user Map">
<val ue>
mar i ssa=koal a, ROLE_TELLER, ROLE_SUPERVI SOR
di anne=enu, ROLE_TELLER
scott =wonbat , ROLE_TELLER
pet er =opal , di sabl ed, ROLE_TELLER
</ val ue>
</ property>
</ bean>

The user Map property contains each of the usernames, passwords, alist of granted authorities and an optional
enabl ed/disabled keyword. Commas delimit each token. The username must appear to the left of the equals
sign, and the password must be the first token to the right of the equals sign. The enabl ed and di sabl ed
keywords (case insensitive) may appear in the second or any subsequent token. Any remaining tokens are
treated as granted authorities, which are created as Gr ant edAut hori t yl npl objects (refer to the Authorization
section for further discussion on granted authorities). Note that if a user has no password and/or no granted
authorities, the user will not be created in the in-memory authentication repository.

I nMenor yDaol npl also offersaset User Properti es(Properties) method, which allows you to externalise the
java. util.Properties inanother Spring configured bean or an external propertiesfile. This might prove
useful for simple applications that have alarger number of users, or deployment-time configuration changes,
but do not wish to use afull database for authentication details.

100RC1

Security

1.6.7. JDBC Authentication

The Acegi Security System for Spring also includes an authentication provider that can obtain authentication
information from a JDBC data source. The typical configuration for the JdbcDaol npl is shown below:

<bean i d="dat aSource" cl ass="org. spri ngfranmework. jdbc. dat asource. Dri ver Manager Dat aSour ce" >
<property nanme="driver d assNane" ><val ue>or g. hsql db. j dbcDri ver </ val ue></ pr operty>
<property nanme="url"><val ue>j dbc: hsql db: hsqgl : / /| ocal host: 9001</ val ue></ pr operty>
<property nanme="user nane"><val ue>sa</ val ue></ property>
<property nanme="password"><val ue></val ue></ property>

</ bean>

<bean i d="j dbcDaol npl " cl ass="org. acegi security.userdetails.jdbc.JdbcDaol npl ">

<property name="dat aSource"><ref bean="dataSource"/></property>
</ bean>

Y ou can use different relational database management systems by maodifying the Dri ver Manager Dat aSour ce
shown above. Irrespective of the database used, a standard schema must be used asindicated in dbi ni t . t xt .

If you default schemais unsuitable for your needs, JdbcDaol npl provides two properties that allow
customisation of the SQL statements. Y ou may also subclass the JdbcDaol npl if further customisationis
necessary. Please refer to the JavaDocs for details.

1.6.8. JAAS Authentication

Acegi Security provides a package able to delegate authentication requests to the Java Authentication and
Authorization Service (JAAS). This package is discussed in detail below.

Central to JAAS operation are login configuration files. To learn more about JAAS login configuration files,
consult the JAAS reference documentation available from Sun Microsystems. We expect you to have abasic
understanding of JAAS and its login configuration file syntax in order to understand this section.

1.6.8.1. JaasAuthenticationProvider

The JaasAut henti cat i onProvi der attempts to authenticate a user’s principal and credentials through JAAS.

Let’s assume we have a JAAS login configuration file, / VEB- | NF/ | ogi n. conf , with the following contents:

JAASTest {
sanpl e. Sanpl eLogi nModul e requi red
b

Like all Acegi Security beans, the JaasAut henti cati onProvi der isconfigured viathe application context. The

following definitions would correspond to the above JAAS login configuration file:

<bean i d="j aasAut henti cati onProvi der"
cl ass="org. acegi securi ty. providers.jaas. JaasAut henti cati onProvi der">
<property nanme="I| ogi nConfi g">
<val ue>/ \EEB- | NF/ | ogi n. conf </ val ue>
</ property>
<property nanme="| ogi nCont ext Nane" >
<val ue>JAASTest </ val ue>
</ property>
<property nanme="cal | backHandl ers" >
<list>
<bean cl ass="org. acegi security.providers.jaas.JaasNaneCal | backHandl er"/ >
<bean cl ass="org. acegi security. providers.jaas.JaasPasswordCal | backHandl er"/>
</list>

Acegi Security System for Spring

18

Security

</ property>
<property name="aut horityG anters">
<list>
<bean cl ass="org. acegi security.providers.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

The Cal | backHand| er sand Aut hori t yGr ant er S are discussed below.

1.6.8.2. Callbacks

Most JAAS Logi nMdul esrequire a callback of some sort. These callbacks are usually used to obtain the
username and password from the user. In an Acegi Security deployment, Acegi Security is responsible for this
user interaction (typically viaareference to a Cont ext Hol der -managed Aut hent i cat i on object). The JAAS
package for Acegi Security provides two default callback handlers, JaasNameCal | backHandl er and
JaasPasswor dCal | backHandl er . Each of these callback handlers implement

JaasAut hent i cati onCal | backHandl er . In most cases these callback handlers can simply be used without
understanding the internal mechanics. For those needing full control over the callback behavior, internally
JaasAut het i cat i onProvi der Wrapsthese JaasAut henti cati onCal | backHandl er Swith an

I nt ernal Cal | backHandl er. Thel nt er nal Cal | backHandl er isthe classthat actually implements JAAS
normal Cal | backHandl er interface. Any time that the JAAS Logi nModul e isused, it is passed alist of
application context configured | nt er nal Cal | backHandl er S. If the Logi nMbdul e requests a callback against the
I nt er nal Cal | backHand! er S, the callback isin-turn passed to the JaasAut hent i cati onCal | backHandl er S
being wrapped.

1.6.8.3. AuthorityGranters

JAAS works with principals. Even “roles’ are represented as principalsin JAAS. Acegi Security, on the other
hand, works with Aut hent i cat i on objects. Each Aut henti cat i on object contains asingle principal, and
multiple Gr ant edAut hori t y[]s. To facilitate mapping between these different concepts, the Acegi Security
JAAS package includes an Aut hori t yGr ant er interface. An Aut hori t yGrant er isresponsible for inspecting a
JAAS principal and returning ast ri ng. The JaasAut henti cati onProvi der then createsa

JaasG ant edAut hor i ty (which implements Acegi Security’s Grant edAut hor i ty interface) containing both the
Aut hori t yGr ant er -returned St ri ng and the JAAS principal that the Aut hori t yGrant er was passed. The
JaasAut hent i cati onProvi der obtainsthe JAAS principals by firstly successfully authenticating the user’s
credentials using the JAAS Logi nMbdul e, and then accessing the Logi nCont ext it returns. A call to

Logi nCont ext . get Subj ect (). get Pri nci pal s() ismade, with each resulting principal passed to each

Aut hori t yGr ant er defined against the JaasAut hent i cati onProvi der . set Aut hori t yGr ant er s(Li st)
property. Acegi Security does not include any production Aut hori t yGr ant er S given every JAAS principal has
an implementation-specific meaning. However, thereisaTest Aut hori t yGrant er in the unit tests that
demonstrates asimple Aut hori t yGrant er implementation.

1.6.9. Siteminder Authentication

Acegi Security provides aweb filter

(org. acegi security. ui . webapp. Si t eni nder Aut hent i cati onProcessi ngFi | t er) that can be used to process
requests that have been pre-authenticated by Computer Associates Siteminder. Thisfilter assumesthat you're
using Siteminder for authentication, and your application (or backing datasource) is used for authorization. The
use of Siteminder for authorization is not yet directly supported by Acegi.

Recall that a Siteminder agent is set up on your web server to intercept a user'sfirst call to your application.

100RC1

Security

This agent redirects the initial reguest to alogin page, and only after successful authentication does your
application receive the request. Authenticated requests contain one or more HTTP headers populated by the
Siteminder agent. Below we'll assume that the request header key containing the user's identity is"SM_USER",
but of course your header values may be different based on Siteminder policy server configuration. Please refer
to your company's "single sign-on" group for header details.

1.6.9.1. SiteminderAuthenticationProcessingFilter

Thefirst step in setting up Acegi's Siteminder support isto define an aut hent i cat i onProcessi ngFi | t er bean
and giveit an aut hent i cat i onManager to use, aswell asto tell it where to send users upon success and failure
and where to find the Siteminder username and password values. Most people won't need the password value
since Siteminder has already authenticated the user, so it's typical to use the same header for both.

<l-- S| TEM NDER AUTHENTI CATI ON PROCESSI NG FI LTER
-->
<bean i d="aut henti cati onProcessingFilter"
cl ass="org. acegi security. ui.webapp. Si t em nder Aut henti cati onProcessi ngFilter">
<property name="aut henti cati onManager"><ref bean="aut henti cati onManager"/></property>
<property name="aut henticati onFailureUrl"><val ue>/I|ogin.jsp?l ogi n_error=1</val ue></ property>
<property nanme="defaul t Target Ur|l " ><val ue>/ security. do?net hod=get Mai nMenu</ val ue></ property>
<property name="filterProcessesUr|"><val ue>/j_acegi _security_check</val ue></property>
<property nanme="sitem nder User naneHeader Key" ><val ue>SM USER</ val ue></ pr operty>
<property nanme="sitem nder Passwor dHeader Key" ><val ue>SM USER</ val ue></ pr operty>
</ bean>

Sincethisaut henti cati onProcessi ngFi | t er dependson an aut hent i cat i onvanager , We'll need to define
one:

<I-- AUTHENTI CATI ON -->
<l--
- The top-level Authentication Manager is responsible for all application AUTHENTI CATI ON
- operations. Note that it nust reference one or nore provider(s) defined bel ow.
-->
<bean i d="aut henti cati onManager" cl ass="org. acegi security. providers. Provi der Manager" >
<property nanme="providers">
<list>
<ref | ocal ="daoAut henti cati onProvider"/>
</list>
</ property>
</ bean>

Note that your daoAut hent i cat i onProvi der above will expect the password property to match what it expects.
In this case, authentication has already been handled by Siteminder and you've specified the same HT TP header
for both username and password, so you can code daoAut hent i cat i onPr ovi der to sSimply make sure the
username and password values match. This may sound like a security weakness, but remember that users have
to authenticate with Siteminder before your application ever receives the requests, so the purpose of your
daoAut hent i cat i onProvi der should simply be to assign roles and other properties needed by subsequent
method interceptors, etc.

Finally we need to tell theti | t er Chai nProxy to include the aut hent i cati onProcessi ngFi | ter inits
operations.

<l-- FI LTER CHAI N -->

<l--
- The web.xm file has a single filter reference to this top-1level bean, which
- invokes the chain of sub-filters specified bel ow
-->

<bean i d="filterChai nProxy" class="org.acegisecurity.util.FilterChainProxy">
<property name="filterlnvocationDefinitionSource">

Acegi Security System for Spring 20

Security

<val ue>
CONVERT_URL_TO_LOWERCASE_BEFORE_COVPARI SON
PATTERN_TYPE_APACHE_ANT
/**=ht t pSessi onCont ext I nt egrati onFilter, aut henticati onProcessingFilter, securityEnforcenentFilter
</ val ue>
</ property>
</ bean>

In summary, once the user has authenticated through Siteminder, their header-loaded request will be brokered
by filterChai nProxy toaut henti cati onProcessi ngFi | t er, which in turn will grab the user's identity from
the SM_USER request header. The user'sidentity will then be passed to the aut hent i cat i onManager and

finally daoAut hent i cati onProvi der will do the work of authorizing the user against back-end databases, etc.
and loading the User Det ai | s implementation with roles, username and any other property you deem relevant.

1.6.10. Authentication Recommendations

With the heavy use of interfaces throughout the authentication system (Aut hent i cati on,
Aut hent i cat i onManager , Aut hent i cat i onProvi der and User Det ai | sSer vi ce) it might be confusing to a new
user to know which part of the authentication system to customize. In general, the following is recommended:

* Usethe User nanePasswor dAut hent i cat i onToken implementation where possible.

« If you simply need to implement a new authentication repository (eg to obtain user details from your
application’s existing database), use the DaoAut hent i cat i onProvi der aong with the User Det ai | sSer vi ce.
It isthe fastest and safest way to integrate an external database.

* If you're using Container Adapters or a RunAsManager that replaces the Aut hent i cat i on object, ensure you
have registered the Aut hBy Adapt er Provi der and RunAsManager | npl Provi der respectively with your
Provi der Manager .

* Never enablethe Test i ngAut henti cat i onProvi der on aproduction system. Doing so will allow any client
to simply present a Test i ngAut hent i cat i onToken and obtain whatever access they request.

e Adding anew Aut henti cati onProvi der is sufficient to support most custom authentication reguirements.
Only unusual requirements would require the Pr ovi der Manager to be replaced with a different
Aut henti cati onManager .

1.7. Authorization

1.7.1. Granted Authorities

As briefly mentioned in the Authentication section, all Aut hent i cat i on implementations are required to store
an array of Grant edAut hori ty objects. These represent the authorities that have been granted to the principal .
The Grant edAut hori t y objects are inserted into the Aut hent i cat i on object by the Aut hent i cati onManager
and are later read by AccessDeci si onManager S when making authorization decisions.

G ant edAut hori ty isan interface with only one method:

public String getAuthority();

100RC1

Security

This method allows AccessDeci si onManager Sto obtain aprecise St ri ng representation of the

G ant edAut hori ty. By returning arepresentation asa st ri ng, aG ant edAut hori ty can be easily "read" by
Most AccessDeci si onManager S. If @G ant edAut hor i ty cannot be precisely represented asast ri ng, the

G ant edAut hori ty isconsidered "complex" and get Aut hori ty() must returnnul | .

An example of a"complex" G ant edAut hor i ty would be an implementation that stores alist of operations and
authority thresholds that apply to different customer account numbers. Representing this complex

Grant edAut hori ty asast ri ng would be quite complex, and as aresult the get Aut hori ty() method should
return nul | . Thiswill indicate to any AccessDeci si onManager that it will need to specifically support the

G ant edAut hori ty implementation in order to understand its contents.

The Acegi Security System for Spring includes one concrete Gr ant edAut hori t y implementation,

G ant edAut hori tyl mpl . This allows any user-specified St ri ng to be converted into aG ant edAut hori ty. All
Aut hent i cat i onProvi der Sincluded with the security architecture use Gr ant edAut hori tyl npl to populate the
Aut hent i cat i on object.

1.7.2. Access Decision Managers

The AccessDeci si onManager iscalled by the Abst ract Securityl nt ercept or and isresponsible for making
final access control decisions. The AccessDeci si onManager interface contains three methods:

public void deci de(Aut hentication authentication, Object object, ConfigAttributeDefinition config)
t hrows AccessDeni edExcepti on;

publ i c bool ean supports(ConfigAttribute attribute);

publ i ¢ bool ean supports(d ass cl azz);

As can be seen from the first method, the AccessDeci si onManager is passed via method parameters all
information that is likely to be of value in assessing an authorization decision. In particular, passing the secure
Obj ect enables those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocat i on. It would be easy to query the Met hodl nvocat i on for
any cust oner argument, and then implement some sort of security logic in the AccessDeci si onManager to
ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeni edExcepti on if accessisdenied.

The supports(ConfigAttribute) methodiscalled by the Abst ract Securi tyl nterceptor at startup timeto
determineif the AccessDeci si onManager can process the passed Confi gAttri bute. Thesupports(d ass)
method is called by a security interceptor implementation to ensure the configured AccessDeci si onManager
supports the type of secure object that the security interceptor will present.

1.7.3. Voting Decision Manager

Whilst users can implement their own AccessDeci si onManager to control all aspects of authorization, the
Acegi Security System for Spring includes several AccessDeci si onManager implementations that are based on
voting. Figure 4 illustrates the relevant classes.

Acegi Security System for Spring 22

Security

=<Interfacerx <dlnterfacerx
CaonfigAttribute AccessDecisionhblanager
getattribute : String decidelauthentication: Authentication,object: Object config: ConfigattributeDefinition) : waoid
| supportsiattribute: Configattibute) : boolean
<<rea|iz‘|e>-‘= supportsiclazz: Class) : boalean
!
.
SecurityConfig ’
<<realizer»
. <<lntefacerx
.
S o2guseny AccessDecision\foter
L 2T
| Abstractdcce selecizionWanager | supportsattribute: Configatribote) : boolean

suppontsclaz: Class): boolean

wotefauthentication: Authentication,object: Object, config: ConfigAttributebefinition) : int

1)
<drealigesr =<realigesr

Unanimc-usElased| lﬁﬁirmativeﬂased| |ConsensusElased| Faletfoter B aszicAclEntnote

Figure 4: Voting Decision Manager

Using this approach, a series of AccessDeci si onVot er implementations are polled on an authorization
decision. The AccessDeci si onManager then decides whether or not to throw an AccessDeni edExcept i on based
on its assessment of the votes.

The AccessDeci si onVot er interface has three methods:

public int vote(Authentication authentication, Object object, ConfigAttributeDefinition config);
publ i c bool ean supports(ConfigAttribute attribute);
publ i c bool ean supports(d ass cl azz);

Concrete implementations return an i nt , with possible values being reflected in the AccessDeci si onVot er
static fields ACCESS ABSTAI N, ACCESS_DENI ED and ACCESS_GRANTED. A voting implementation will return
ACCESS_ABSTAI Nif it has no opinion on an authorization decision. If it does have an opinion, it must return
either ACCESS_DENI ED Or ACCESS_GRANTED.

There are three concrete AccessDeci si onManager S provided with the Acegi Security System for Spring that
tally the votes. The ConsensusBased implementation will grant or deny access based on the consensus of
non-abstain votes. Properties are provided to control behavior in the event of an equality of votes or if all votes
areabstain. The Af fi rmati veBased implementation will grant access if one or more ACCESS_GRANTED Votes
were received (ie adeny vote will be ignored, provided there was at |east one grant vote). Like the
ConsensusBased implementation, there is a parameter that controls the behavior if al voters abstain. The

Unani nousBased provider expects unanimous ACCESS GRANTED Votes in order to grant access, ignoring abstains.
It will deny accessif thereis any ACCESS_DENI ED vote. Like the other implementations, there is a parameter that
controls the behaviour if all voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For example, votes
from a particular AccessDeci si onVot er might receive additional weighting, whilst a deny vote from a
particular voter may have a veto effect.

There are two concrete AccessDeci si onVot er implementations provided with the Acegi Security System for
Spring. The Rol evot er classwill vote if any ConfigAttribute begins with ROLE_. It will vote to grant access if
thereisaG ant edAut hori ty which returnsa st ri ng representation (viathe get Aut hori t y() method) exactly
equal to one or more Conf i gAttri but es starting with ROLE_. If there is no exact match of any

Confi gAttri but e starting with ROLE_, the Rol evot er will vote to deny access. If no Confi gAttri but e begins
with ROLE_, the voter will abstain. Rol eVot er iS case sensitive on comparisons as well asthe ROLE_ prefix.

100RC1

Security

BasicAclEntryVoter isthe other concrete voter included with Acegi Security. It integrates with Acegi Security's
Acl Manager (discussed later). Thisvoter is designed to have multiple instances in the same application context,
such as:

<bean i d="acl Cont act ReadVot er" cl ass="org. acegi security.vote. Basi cAcl EntryVoter">
<property nanme="processConfi gAttribute"><val ue>ACL_CONTACT_READ</ val ue></ property>
<property nanme="processDomai nCbj ect O ass" ><val ue>sanpl e. cont act . Cont act </ val ue></ pr operty>
<property nanme="acl Manager"><ref | ocal ="acl Manager"/ ></ property>
<property nanme="requirePerm ssion">
<list>
<ref | ocal ="org. acegi security. acl.basic.Sinpl eAcl Entry. ADM NI STRATI ON'/ >
<ref |ocal ="org.acegi security.acl.basic.Si npl eAcl Entry. READ'/ >
</list>
</ property>
</ bean>

<bean i d="acl Cont act Del eteVoter" cl ass="org. acegi security.vote. Basi cAcl EntryVoter">
<property name="processConfi gAttribute"><val ue>ACL_CONTACT_DELETE</ val ue></ pr operty>
<property nanme="processDomai nObj ect Cl ass" ><val ue>sanpl e. cont act. Cont act </ val ue></ property>
<property nanme="acl Manager"><ref | ocal ="acl Manager"/></ property>
<property nanme="requirePerm ssion">
<list>
<ref |ocal ="org. acegi security. acl.basic. Si npl eAcl Entry. ADM NI STRATI ON'/ >
<ref |ocal ="org. acegi security.acl.basic. Si npl eAcl Entry. DELETE"/ >
</list>
</ property>
</ bean>

In the above example, you'd define ACL_CONTACT_READ Or ACL_CONTACT_DELETE against some methods on a
Met hodSecuri tyl ntercept or OF Aspect JSecuri tyl nt er cept or . When those methods are invoked, the above
applicable voter defined above would vote to grant or deny access. The voter would look at the method
invocation to locate the first argument of type sanpl e. cont act . Cont act , and then pass that Cont act to the
Acl Manager . The Acl Manager will then return an access control list (ACL) that applies to the current

Aut hent i cat i on. Assuming that ACL contains one of the listed r equi r ePer ni ssi ons, the voter will vote to
grant access. If the ACL does not contain one of the permissions defined against the voter, the voter will vote to
deny access. Basi cAcl Ent ryVot er isan important class asit allows you to build truly complex applications
with domain object security entirely defined in the application context. If you're interested in learning more
about Acegi Security's ACL capabilities and how best to apply them, please seethe ACL and "After
Invocation™ sections of this reference guide, and the Contacts sample application.

It is aso possible to implement a custom AccessDeci si onVot er . Several examples are provided in the Acegi
Security System for Spring unit tests, including Cont act Securi t yVot er and DenyVot er . The

Cont act Securi t yVot er abstains from voting decisions where a CONTACT_OANED_BY_CURRENT_USER

Confi gAttribut e isnot found. If voting, it queriesthe Met hodl nvocat i on to extract the owner of the Cont act
object that is subject of the method call. It votesto grant access if the Cont act owner matches the principal
presented in the Aut hent i cat i on object. It could have just as easily compared the Cont act owner with some
G ant edAut hori ty the Aut hent i cat i on object presented. All of thisis achieved with relatively few lines of
code and demonstrates the flexibility of the authorization model.

1.7.4. Authorization-Related Tag Libraries

The Acegi Security System for Spring comes bundled with several JSP tag libraries that eases JSP writing. The
tag libraries are known as aut hz and provide a range of different services.

All taglib classes areincluded in the core acegi - securi ty- xx. j ar file, withtheaut hz. t1 d located in the
JAR'S META- I NF directory. This means for JSP 1.2+ web containers you can smply include the JAR in the
WAR'SVEB- | NF/ | i b directory and it will be available. If you're using aJSP 1.1 container, you'll need to
declare the JSPtaglib in your web. xmi file, andincludeaut hz. t1d inthewes- I NF/ i b directory. The

Acegi Security System for Spring 24

Security

following fragment is added to web. xn :

<taglib>
<taglib-uri>http://acegisecurity.sf.net/authz</taglib-uri>
<taglib-1ocation> WEB-|NF/ authz.tld</taglib-1ocation>
</taglib>

1.7.4.1. AuthorizeTag
Aut hor i zeTag is used to include content if the current principal holds certain G- ant edAut hori t ys.

The following JSP fragment illustrates how to use the Aut hor i zeTag:

<aut hz: authorize ifAl | G ant ed="ROLE_SUPERVI SOR' >
<t d>
<A HREF="del . ht n?i d=<c: out val ue="${contact.id}"/>">Del </ A>
</td>
</ aut hz: aut hori ze>

Thistag would cause the tag's body to be output if the principal has been granted ROLE_SUPERVISOR.

The aut hz: aut hor i ze tag declares the following attributes:

* ifAll Ganted: All thelisted roles must be granted for the tag to output its body.
e ifAnyGanted: Any of thelisted roles must be granted for the tag to output its body.
e ifNot Gant ed: None of the listed roles must be granted for the tag to output its body.

You'll note that in each attribute you can list multiple roles. Simply separate the roles using acomma. The
aut hori ze tag ignores whitespace in attributes.

Thetag library logically ANDs al of it's parameters together. This meansthat if you combine two or more
attributes, all attributes must be true for the tag to output it's body. Don't add an

i f All G ant ed="ROLE_SUPERVI SOR", followed by ani f Not G- ant ed=" ROLE_SUPERVI SOR", or you'l| be surprised
to never see the tag's body.

By requiring al attributes to return true, the authorize tag allows you to create more complex authorization
scenarios. For example, you could declareanii f Al | Grant ed="ROLE_SUPERVI SOR' and an

i f Not Gr ant ed=" ROLE_NEWBI E_SUPERVI SCR" in the same tag, in order to prevent new supervisors from seeing
the tag body. However it would no doubt be simpler to usei f Al | G ant ed=" ROLE_EXPERI ENCED_SUPERVI SCR"
rather than inserting NOT conditions into your design.

One last item: the tag verifies the authorizations in a specific order: firsti f Not G- ant ed, theni f Al | Grant ed,
and finally, i f AnyGr ant ed.

1.7.4.2. AuthenticationTag

Aut hent i cati onTag iSused to simply output a property of the current principal's
Aut henti cati on. get Pri nci pal () object to the web page.

The following JSP fragment illustrates how to use the Aut hent i cat i onTag:

<aut hz: aut henti cati on operati on="usernanme"/>

100RC1

Security

Thistag would cause the principal’'s name to be output. Here we are assuming the
Aut henti cati on. get Pri nci pal () iSaUser Det ai | s object, which is generally the case when using the typical
DaoAut hent i cati onProvi der.

1.7.4.3. AclTag
Acl Tag is used to include content if the current principal has a ACL to the indicated domain object.

The following JSP fragment illustrates how to use the Acl Tag:

<aut hz: acl domai nObj ect ="${contact}" hasPerm ssi on="16, 1">

<t d><A HREF="<c: url val ue="del . ht nf ><c: par am nanme="cont act | d"
val ue="${contact.id}"/></c:url>">Del </ A></td>
</ aut hz: acl >

This tag would cause the tag's body to be output if the principal holds either permission 16 or permission 1 for
the "contact" domain object. The numbers are actually integers that are used with Abst r act Basi cAcl Ent ry bit
masking. Please refer tro the ACL section of this reference guide to understand more about the ACL
capabilities of Acegi Security.

1.7.5. Authorization Recommendations

Given there are several ways to achieve similar authorization outcomes in the Acegi Security System for
Spring, the following general recommendations are made:

e Grant authoritiesusing G ant edAut hori t yl npl where possible. Because it is aready supported by the
Acegi Security System for Spring, you avoid the need to create custom Aut hent i cat i onManager Or
Aut hent i cat i onProvi der implementations simply to populate the Aut hent i cat i on object with acustom
Grant edAut hority.

* Writing an AccessDeci si onVot er implementation and using either ConsensusBased, Af fi r mati veBased Or
Unani nousBased asthe AccessDeci si onManager may be the best approach to implementing your custom
access decision rules.

1.8. After Invocation Handling

1.8.1. Overview

Whilst the AccessDeci si onManager iscalled by the Abst ract Securi tyl nt er cept or before proceeding with
the secure object invocation, some applications need away of modifying the object actually returned by the
secure object invocation. Whilst you could easily implement your own AOP concern to achieve this, Acegi
Security provides a convenient hook that has several concrete implementations that integrate with its ACL
capabilities.

Figure 5illustrates Acegi Security's Af t er | nvocat i onManager and its concrete implementations.

Acegi Security System for Spring 26

Security

=<|nteface=>

Afterlnwocationdanager

decidelauthentication: Authentication,object: Object,zonfig: ConfigAttributebefinition,returnedObject: Object) : Object
suppons attribute: ConfigaAttribute) : boolean

suppontsiclazz: Class): boaolean

“drealige==
1

<2lnterface==
AfterlnvocationProviderlanager |- — i{ESE}_}_}
AfterinvacationProwider
A A
<2redling = =<zredlimgr=
1 1
BaszicAclEntrpffternvacationCallectionFilteringProvider BaszicAc|EntrpffterinvocationProvider
T I
| |
ﬁ\-’Ll;lrsebb wﬁebb

2dInteface=>

Acihanager

Figure 5: After Invocation Implementation

Like many other parts of Acegi Security, Aft er | nvocat i onManager has a single concrete implementation,
AfterlnvocationProvi der, which pollsalist of Afterl nvocati onProvi der S. Each

AfterlnvocationProvi der isallowed to modify the return object or throw an AccessDeni edExcept i on. Indeed
multiple providers can modify the object, as the result of the previous provider is passed to the next in the list.
Let's now consider our ACL-aware implementations of Aft er | nvocat i onPr ovi der.

Please be aware that if you're using Af t er | nvocat i onManager , you will still need configuration attributes that
allow the Met hodSecuri tyl nt er cept or 'S AccessDeci si onManager to allow an operation. If you're using the
typical Acegi Security included AccessDeci si onManager implementations, having no configuration attributes
defined for a particular secure method invocation will cause each AccessDeci si onVot er to abstain from voting.
Inturn, if the AccessDeci si onManager property "al | owi f Al | Abst ai nDeci si ons" iSfal se, an

AccessDeni edExcept i on will be thrown. Y ou may avoid this potential issue by either (i) setting

"al | owl f Al | Abst ai nDeci si ons" tot rue (although thisis generally not recommended) or (ii) simply ensure
that thereis at least one configuration attribute that an AccessDeci si onVot er will vote to grant access for. This
latter (recommended) approach is usually achieved through a ROLE_USER or ROLE_AUTHENTI CATED configuration
attribute.

1.8.2. ACL-Aware AfterinvocationProviders

A common services layer method we've all written at one stage or another looks like this:

public Contact getByld(lnteger id);

Quite often, only principals with permission to read the Cont act should be alowed to obtain it. In this situation
the AccessDeci si onManager approach provided by the Abst ract Securi tyl nt er cept or Will not suffice. Thisis
because the identity of the cont act isall that is available before the secure abject isinvoked. The

Basi cAcl After | nvocati onProvi der deliversasolution, and is configured as follows:

<bean i d="after Acl Read"
cl ass="org. acegi security. afterinvocation. Basi cAcl EntryAfterlnvocati onProvi der">

100RC1

Security

<property name="acl Manager"><ref | ocal ="acl Manager"/ ></ property>
<property nanme="requirePerm ssion">

<list>
<ref |ocal ="org.acegi security.acl.basic. SinpleAcl Entry. ADM Nl STRATI ON'/ >
<ref |ocal ="org. acegi security. acl.basic. Si npl eAcl Entry. READ"/ >
</list>
</ property>
</ bean>

In the above example, the Cont act will be retrieved and passed to the

Basi cAcl EntryAfter | nvocati onProvi der. The provider will thrown an AccessDeni edExcept i on if one of the
listed r equi r ePer ni ssi onsisnot held by the Aaut hent i cati on. The Basi cAcl EntryAfterlnvocati onProvi der
queries the Acl Manager to determine the ACL that applies for this domain object to this Aut henti cat i on.

Similar to the Basi cAcl Ent ryAft er I nvocat i onProvi der iS

Basi cAcl EntryAfter|nvocationCol | ectionFilteringProvider. Itisdesigned to remove Col | ecti on Or
array elements for which a principal does not have access. It never thrown an AccessDeni edExcept i on - SImply
silently removes the offending elements. The provider is configured as follows:

<bean id="afterAcl Col | ecti onRead"
cl ass="org. acegi security.afterinvocation. Basi cAcl EntryAfterlnvocati onCol | ectionFilteringProvider">
<property name="acl Manager" ><ref | ocal ="acl Manager"/></ property>
<property nanme="requirePerm ssion">
<list>
<ref |ocal ="org. acegi security. acl.basic.Sinpl eAcl Entry. ADM NI STRATI ON'/ >
<ref |ocal ="org.acegi security.acl.basic. Si npl eAcl Entry. READ'/ >
</list>
</ property>
</ bean>

Asyou can imagine, the returned vj ect must beacol | ect i on or array for this provider to operate. It will
remove any element if the Acl Manager indicates the Aut hent i cat i on does not hold one of the listed

requi rePer nmi ssi onS.

The Contacts sample application demonstrates these two Af t er | nvocat i onPr ovi der S.

1.9. Run-As Authentication Replacement

1.9.1. Purpose

The Abst ract Securityl ntercept or isableto temporarily replace the Aut henti cat i on object in the
SecurityCont ext and Securi t yCont ext Hol der during the Securi tyl nt er cept or Cal | back. Thisonly occurs if
the original Aut henti cati on object was successfully processed by the Aut hent i cat i onManager and
AccessDeci si onManager . The RunAsManager Will indicate the replacement Aut henti cat i on object, if any, that
should be used during the Securi tyl nt er cept or Cal | back.

By temporarily replacing the Aut hent i cat i on object during aSecuri tyl nt er cept or Cal | back, the secured
invocation will be able to call other objects which require different authentication and authorization credentials.
It will also be ableto perform any internal security checks for specific G ant edAut hori t y objects. Because
Acegi Security provides a number of helper classes that automatically configure remoting protocols based on
the contents of the Cont ext Hol der , these run-as replacements are particularly useful when calling remote web
services.

Acegi Security System for Spring 28

Security

1.9.2. Usage

A RunAsManager interfaceis provided by the Acegi Security System for Spring:

public Authentication buil dRunAs(Aut henti cati on aut henticati on, Object object,
ConfigAttributeDefinition config);

publ i c bool ean supports(ConfigAttribute attribute);

public bool ean supports(C ass clazz);

The first method returnsthe Aut hent i cat i on object that should replace the existing Aut hent i cat i on object for
the duration of the method invocation. If the method returnsnul 1, it indicates no replacement should be made.
The second method is used by the Abst ract Securi tyl nt er cept or as part of its startup validation of
configuration attributes. The support s(d ass) method is called by a security interceptor implementation to
ensure the configured RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with the Acegi Security System for Spring. The
RunAsManager | npl class returns areplacement RunAsUser Token if any Confi gAttri but e Startswith RUN_AS_.
If any such Confi gAttri but e isfound, the replacement RunAsUser Token will contain the same principal,
credentials and granted authorities as the original Aut hent i cat i on object, along with a new

Grant edAut hori tyl npl for each RUN_AS_ Confi gAttri but e. Each new Grant edAut hori tyl mpl will be
prefixed with ROLE_, followed by the RUN_AS Confi gAtt ri but e. FOor example, arRUN_AS_SERVER Will result in
the replacement RunAsUser Token containing a ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUser Token isjust like any other Aut hent i cat i on object. It needs to be authenticated by
the Aut hent i cat i onManager , probably via delegation to a suitable Aut hent i cat i onPr ovi der. The

RunAs| npl Aut hent i cat i onProvi der performs such authentication. It simply accepts as valid any

RunAsUser Token presented.

To ensure malicious code does not create a RunAsUser Token and present it for guaranteed acceptance by the
RunAs| npl Aut hent i cat i onPr ovi der , the hash of akey is stored in all generated tokens. The
RunAsManager | npl and RunAs| npl Aut hent i cati onProvi der is created in the bean context with the same key:

<bean i d="runAsManager" cl ass="org. acegi security.runas. RunAsManager | npl ">
<property nanme="key"><val ue>ny_run_as_passwor d</ val ue></ property>
</ bean>

<bean i d="runAsAut henti cati onProvi der"

cl ass="org. acegi securi ty.runas. RunAsl npl Aut henti cati onProvi der">
<property name="key"><val ue>ny_run_as_passwor d</ val ue></ property>

</ bean>

By using the same key, each RunAsUser Token can be validated it was created by an approved
RunAsManager | npl . The RunAsUser Token isimmutable after creation for security reasons.

1.10. User Interfacing with the SecurityContextHolder

1.10.1. Purpose

Everything presented so far assumes one thing: the Secur i t yCont ext Hol der is populated with avalid
Securi t yCont ext , which in turn contains avalid Aut hent i cat i on object. Developers are free to do thisin
whichever way they like, such as directly calling the relevant objects at runtime. However, several classes have

100RC1

Security

been provided to make this process transparent in many situations. We call these classes "authentication
mechanisms’.

Theorg. acegi security. ui package provideswhat we call "authentication processing mechanisms'. An
authentication processing mechanism is solely concerned with received an authentication request from the
principal, testing if it seemsvalid, and if so, placing the authentication request token onto the

Securi t yCont ext Hol der . Of course, if the authentication request isinvalid, the authentication processing
mechanism is responsible for informing the principal in whatever way is appropriate to the protocol.

Recall the Ht t pSessi onCont ext I nt egr ati onFi | t er (discussed in the context section) is responsible for storing
the Securi t yCont ext Hol der contents between invocations. This means no authentication processing
mechanism need ever interact directly with Ht t pSessi on. Indeed Ht t pSessi onCont ext | nt egr ati onFi | ter has
been designed to minimise the unnecessary creation of H: t pSessi ons, as might occur when using Basic
authentication for example.

There are severa authentication processing mechanisms included with Acegi Security, which will be briefly
discussed in this chapter. The most popular (and almost always recommended) approach isHTTP Form
Authentication, which uses alogin form to authenticate the user. Another approach (commonly use with web
services) is HTTP Basic Authentication, which allows clients to use HT TP headers to present authentication
information to the Acegi Security System for Spring. Alternatively, you can also use Yae Centra
Authentication Service (CAS) for enterprise-wide single sign on. The final (and generally unrecommended)
approach is via Container Adapters, which allow supported web containers to perform the authentication
themselves. HTTP Form Authentication and Basic Authentication is discussed below, whilst CAS and
Container Adapters are discussed in separate sections of this document.

1.10.2. HTTP Form Authentication

HTTP Form Authentication involves using the Aut hent i cat i onPr ocessi ngFi | t er to processalogin form. The
login form simply containsj _user name andj _passwor d input fields, and poststo a URL that is monitored by
thefilter (by defaultj _acegi _security_check). Thefilter isdefined inweb. xm behind aFi | t er ToBeanPr oxy
asfollows:

<filter>
<filter-name>Acegi Authentication Processing Filter</filter-nanme>
<filter-class>org.acegisecurity.util.FilterToBeanProxy</filter-class>
<init-paranr
<par am nane>t ar get C ass</ par am nane>
<par am val ue>or g. acegi securi ty. ui . webapp. Aut henti cati onProcessi ngFi | t er </ par am val ue>
</init-paranr
</filter>

<filter-mppi ng>
<filter-name>Acegi Authentication Processing Filter</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

For adiscussion of Fi | t er ToBeanPr oxy, please refer to the Filters section. The application context will need to
define the Aut hent i cati onProcessi ngFil ter:

<bean i d="aut henticati onProcessingFilter"
cl ass="org. acegi security. ui.webapp. Aut henti cati onProcessingFilter">
<property nanme="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="aut henticationFail ureUrl"><val ue>/acegil ogi n.jsp?l ogi n_error=1</val ue></ property>
<property name="defaul t Tar get Ur|l " ><val ue>/ </ val ue></ pr operty>
<property name="filterProcessesUr|"><val ue>/j _acegi security_check</val ue></property>
</ bean>

Acegi Security System for Spring 30

Security

The configured Aut hent i cat i onManager processes each authentication request. If authentication fails, the
browser will be redirected to the aut hent i cat i onFai | ureUr| . The Aut henti cat i onExcept i on Will be placed
into the Ht t pSessi on attribute indicated by

Abstr act Processi ngFi | t er. ACEG _SECURI TY_LAST_EXCEPTI ON_KEY, enabling areason to be provided to the
user on the error page.

If authentication is successful, the resulting Aut hent i cat i on object will be placed into the
Securi t yCont ext Hol der .

Oncethe Securi t yCont ext Hol der has been updated, the browser will need to be redirected to the target URL.
Thetarget URL is usually indicated by the Ht t pSessi on attribute specified by

Abst ract Processi ngFi | t er. ACEG _SECURI TY_TARGET_URL_KEY. This attribute is automatically set by the
Securi t yEnf or cement Fi | t er When an Aut hent i cati onExcept i on Occurs, so that after login is completed the
user can return to what they were trying to access. If for some reason the Ht t pSessi on does not indicate the
target URL, the browser will be redirected to the def aul t Tar get Ur | property.

Because this authentication approach is fully contained within a single web application, HTTP Form
Authentication is recommended to be used instead of Container Adapters.

1.10.3. HTTP Basic Authentication

The Acegi Security System for Spring provides aBasi cPr ocessi ngFi | t er which is capable of processing
basic authentication credentials presented in HTTP headers. This can be used for authenticating calls made by
Spring remoting protocols (such as Hessian and Burlap), as well as normal user agents (such as Internet
Explorer and Navigator). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section
11, and the Basi cPr ocessi ngFi | t er conforms with this RFC. Basic Authentication is an attractive approach to
authentication, because it is very widely deployed in user agents and implementation is extremely simple (it's
just a Base64 encoding of the username:password, specified in aHTTP header).

To implement HTTP Basic Authentication, it is necessary to define Basi cPr ocessi ngFi | t er inthefitler chain.
The application context will need to define the Basi cProcessi ngFi | t er and its required collaborator:

<bean i d="basi cProcessingFilter" class="org.acegi security.ui.basicauth. BasicProcessingFilter">
<property nanme="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>
<property name="aut henticati onEntryPoi nt"><ref bean="authenticati onEntryPoint"/></property>
</ bean>

<bean i d="aut henti cati onEnt ryPoi nt"

cl ass="org. acegi security. ui.basi cauth. Basi cProcessi ngFi | ter EntryPoi nt">
<property name="real mNane" ><val ue>Nane O Your Real nx/val ue></property>

</ bean>

The configured Aut hent i cat i onManager processes each authentication request. If authentication fails, the
configured Aut hent i cat i onEnt ryPoi nt Will be used to retry the authentication process. Usually you will use
the Basi cProcessi ngFi | t er Ent ryPoi nt , which returns a 401 response with a suitable header to retry HTTP
Basic authentication. If authentication is successful, the resulting Aut hent i cat i on object will be placed into the
Securit yCont ext Hol der .

If the authentication event was successful, or authentication was not attempted because the HTTP header did
not contain a supported authentication request, the filter chain will continue as normal. The only time the filter
chain will beinterrupted isif authentication fails and the Aut hent i cat i onEnt ryPoi nt is called, asdiscussed in
the previous paragraph.

100RC1

Security

1.10.4. HTTP Digest Authentication

The Acegi Security System for Spring provides abDi gest Processi ngFi | t er which is capable of processing
digest authentication credential s presented in HTTP headers. Digest Authentication attempts to solve many of
the weakenesses of Basic authentication, specifically by ensuring credentials are never sent in clear text across
the wire. Many user agents support Digest Authentication, including FireFox and Internet Explorer. The
standard governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version of
the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC 2617. The
Acegi Security b gest Processi ngFi | t er iScompatible with the "aut h" quality of protection (qop) prescribed
by RFC 2617, which also provides backward compatibility with RFC 2069. Digest Authentication is a highly
attractive option if you need to use unencrypted HTTP (ie no TLS/HTTPS) and wish to maximise security of
the authentication process. Indeed Digest Authentication is a mandatory requirement for the WebDAV
protocol, as noted by RFC 2518 Section 17.1, so we should expect to seeit increasingly deployed and replacing
Basic Authentication.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic Authentication
and Digest Authentication, although extra security also means more complex user agent implementations.
Central to Digest Authentication isa"nonce". Thisisavalue the server generates. Acegi Security's nonce
adopts the following format:

base64(expirationTime + ":" + ndSHex(expirationTine + ":" + key))
expirationTi me: The date and tine when the nonce expires, expressed in mlliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Processi ngFi | t er Ent ryPoi nt has a property specifying the key used for generating the nonce
tokens, along with anonceVal i di t ySeconds property for determining the expiration time (default 300, which
equals five minutes). Whilstever the nonce is valid, the digest is computed by concatenating various strings
including the username, password, nonce, URI being requested, a client-generated nonce (merely arandom
value which the user agent generates each request), the realm name etc, then performing an MD5 hash. Both
the server and user agent perform this digest computation, resulting in different hash codesif they disagree on
an included value (eg password). In the Acegi Security implementation, if the server-generated nonce has
merely expired (but the digest was otherwise valid), the Di gest Processi ngFi | t er Ent ryPoi nt will send a
“stal e=true" header. Thistellsthe user agent thereis no need to disturb the user (as the password and
username etc is correct), but simply to try again using a new nonce.

An appropriate value for Di gest Processi ngFi | t er Ent ryPoi nt 'SnonceVal i di t ySeconds parameter will
depend on your application. Extremely secure applications should note that an intercepted authentication header
can be used to impersonate the principal until the expi rati onTi me contained in the nonce isreached. Thisis
the key principle when selecting an appropriate setting, but it would be unusual for immensly secure
applicationsto not be running over TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent issues. For
example, Internet Explorer failsto present an "opaque" token on subsequent requests in the same session. The
Acegi Security filters therefore encapsulate all state information into the "nonce" token instead. In our testing,
the Acegi Security implementation works reliably with FireFox and Internet Explorer, correctly handling nonce
timeouts etc.

Now that we've reviewed the theory, let's see how to useit. To implement HTTP Digest Authentication, itis
necessary to define Di gest Processi ngFi | t er inthefitler chain. The application context will need to define the
Di gest Processi ngFi | t er and itsrequired collaborators:

<bean i d="di gest ProcessingFilter" class="org.acegi security.ui.digestauth. D gestProcessingFilter">

Acegi Security System for Spring 32

Security

<property name="user Detail sServi ce"><ref | ocal ="jdbcDaol npl "/ ></property>
<property nanme="aut henti cati onEntryPoi nt"><ref

| ocal ="di gest Processi ngFi | t er EntryPoi nt"/></ property>
<property name="user Cache"><ref |ocal ="userCache"/></property>

</ bean>

<bean i d="di gest Processi ngFi | ter EntryPoi nt"

cl ass="org. acegi security.ui.digestauth. D gest Processi ngFilterEntryPoint">
<property name="real mNane" ><val ue>Cont acts Real m vi a Di gest Aut henti cati on</val ue></property>
<property name="key"><val ue>acegi </ val ue></ property>
<property name="nonceVal i di t ySeconds" ><val ue>10</ val ue></ property>

</ bean>

The configured User Det ai | sSer vi ce iSneeded because Di gest Processi ngFi | t er must have direct accessto

the clear text password of a user. Digest Authentication will NOT work if you are using encoded passwordsin
your DAO. The DAO collaborator, along with the User Cache, are typically shared directly with a

DaoAut hent i cat i onProvi der. The aut hent i cat i onEnt ryPoi nt property must be

Di gest Processi ngFi | t er Ent ryPoi nt , SO that Di gest Processi ngFi | t er can obtain the correct r eal mNane and
key for digest calculations.

Like Basi cAut hent i cati onFi | ter, if authentication is successful an Aut hent i cat i on request token will be
placed into the Securi t yCont ext Hol der . If the authentication event was successful, or authentication was not
attempted because the HTTP header did not contain a Digest Authentication request, the filter chain will
continue as normal. The only time the filter chain will be interrupted isif authentication fails and the

Aut hent i cat i onEnt ryPoi nt is called, as discussed in the previous paragraph.

Digest Authentication's RFC offers arange of additional features to further increase security. For example, the
nonce can be changed on every request. Despite this, the Acegi Security implementation was designed to
minimise the complexity of the implementation (and the doubtless user agent incompatibilities that would
emerge), and avoid needing to store server-side state. You areinvited to review RFC 2617 if you wish to
explore these features in more detail. Asfar as we are aware, the Acegi Security implementation does comply
with the minimum standards of this RFC.

1.10.5. Anonymous Authentication

Particularly in the case of web request URI security, sometimes it is more convenient to assign configuration
attributes against every possible secure object invocation. Put differently, sometimesit is nice to say
ROLE_SOMETHI NGis required by default and only alow certain exceptions to this rule, such asfor login, logout
and home pages of an application. There are also other situations where anonymous authentication would be
desired, such as when an auditing interceptor queries the Securi t yCont ext Hol der to identify which principal
was responsible for a given operation. Such classes can be authored with more robustness if they know the
Securi t yCont ext Hol der always contains an Aut hent i cat i on object, and never nul | .

Acegi Security provides three classes that together provide an anoymous authentication feature.

AnonymousAut hent i cat i onToken iSan implementation of Aut hent i cat i on, and stores the

G ant edAut hor i t y[]s which apply to the anonymous principal. Thereis a corresponding

AnonynousAut hent i cat i onPr ovi der , which is chained into the Pr ovi der Manager so that

AnonynousAut hent i cat i onTokens are accepted. Finally, there is an AnonymousProcessingFilter, whichis
chained after the normal authentication mechanisms and automatically add an AnonynousAut henti cati onToken
tothe Securi t yCont ext Hol der if thereis no existing Aut hent i cat i on held there. The definition of the filter
and authentication provider appears as follows:

<bean i d="anonynousProcessi ngFilter"
cl ass="org. acegi security. provi ders. anonynous. AnonynousProcessi ngFi |l ter">
<property nanme="key"><val ue>f oobar </ val ue></ property>

100RC1

Security

<property name="userAttri bute"><val ue>anonynousUser, ROLE_ANONYMOUS</ val ue></ pr operty>
</ bean>

<bean i d="anonynousAut henti cati onProvi der"

cl ass="org. acegi security. provi ders. anonynous. AnonynousAut henti cati onProvi der">
<property nanme="key"><val ue>f oobar </ val ue></ property>

</ bean>

Thekey is shared between the filter and authentication provider, so that tokens created by the former are
accepted by the latter. Theuser At tri but e is expressed in the form of

user nanel nTheAut hent i cat i onToken, gr ant edAut hori ty[, grant edAut hori ty] . Thisisthe same syntax as
used after the equals sign for | nMenor yDaol npl 'Suser Map property.

Asexplained earlier, the benefit of anonymous authentication is that all URI patterns can have security applied
to them. For example:

<bean id="filterlnvocationlnterceptor"
cl ass="org. acegi security.intercept.web. FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager"><ref bean="aut henti cati onManager"/></property>
<property nanme="accessDeci si onManager " ><ref | ocal ="httpRequest AccessDeci si onManager "/ ></ property>
<property name="obj ect DefinitionSource">
<val ue>
CONVERT _URL_TO LOWERCASE BEFORE_COMPARI SON
PATTERN_TYPE_APACHE_ANT
/i ndex. j sp=ROLE_ANONYMOUS, ROLE_USER
/ hel | 0. ht mmROLE_ANONYMOUS, ROLE_USER
/| ogof f .] sp=ROLE_ANONYMOUS, ROLE_USER
/ acegi | ogi n. j sp*=ROLE_ANONYMOUS, ROLE_USER
/ **=ROLE_USER
</val ue>
</ property>
</ bean>

Rounding out the anonymous authentication discussion isthe Aut hent i cat i onTr ust Resol ver interface, with
its corresponding Aut hent i cat i onTr ust Resol ver | npl implementation. Thisinterface provides an

i sAnonymous(Aut hent i cati on) method, which allows interested classes to take into account this special type
of authentication status. The Securi t yEnf or cenent Fi | t er usesthisinterface in processing

AccessDeni edExcept i onS. If an AccessDeni edExcept i on iSthrown, and the authentication is of an anonymous
type, instead of throwing a 403 (forbidden) response, the filter will instead commence the

Aut hent i cat i onEnt ryPoi nt SO the principal can authenticate properly. Thisis anecessary distinction,
otherwise principals would always be deemed "authenticated" and never be given an opportunity to login via
form, basic, digest or some other normal authentication mechanism.

1.10.6. Remember-Me Authentication

Remember-me authentication refers to web sites being able to remember the identity of a principal between
sessions. Thisistypically accomplished by sending a cookie to the browser, with the cookie being detected
during future sessions and causing automated login to take place. Acegi Security provides the necessary hooks
so that such operations can take place, along with providing a concrete implementation that uses hashing to
preserve the security of cookie-based tokens.

Remember-me authentication is not used with digest or basic authentication, given they are often not used with
Ht t pSessi onS. Remember-meis used with Aut hent i cat i onProcessi ngFi | t er, and isimplemented via hooks
inthe Abst ract Processi ngFi | t er superclass. The hooks will invoke a concrete Renenber MeSer vi ces at the
appropriate times. The interface looks like this:

public Authentication autoLogi n(H tpServl et Request request, HttpServl et Response response);
public void |oginFail (HtpServl et Request request, HttpServl et Response response);

Acegi Security System for Spring 34

Security

public void | ogi nSuccess(HttpServl et Request request, HttpServl et Response response, Authentication
successf ul Aut henti cation);

Please refer to JavaDocs for afuller discussion on what the methods do, although note at this stage

Abst r act Processi ngFi | ter only callsthel ogi nFai | () and | ogi nSuccess() methods. The aut oLogi n()
method is called by Renenber MePr ocessi ngFi | t er whenever the Securi t yCont ext Hol der does hot contain an
Aut hent i cat i on. Thisinterface therefore provides the underlaying remember-me implementation with
sufficient notification of authentication-related events, and delegates to the implementation whenever a
candidate web reguest might contain a cookie and wish to be remembered.

This design allows any number of remember-me implementation strategies. In the interests of simplicity and
avoiding the need for DA O implementations that specify write and create methods, Acegi Security's only
concrete implementation, TokenBasedRenenber MeSer vi ces, Uses hashing to achieve a useful remember-me
strategy. In essence a cookie is sent to the browser upon successful interactive authentication, with that cookie
being composed as follows:

base64(username + ":" + expirationTime + ":" + md5Hex(username + ":" + expirationTime + ":"
password + ":" + key))

user name: As identifiable to TokenBasedRenmenber MeSer vi ces. get User Det ai | sSer vi ce()

passwor d: That matches the rel evant UserDetails retrieved from
TokenBasedRenmenber MeSer vi ces. get User Det ai | sSer vi ce()

expirationTi me: The date and tine when the renmenber-nme token expires, expressed in mlliseconds
key: A private key to prevent nodification of the renenber-ne token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue issuein that a captured
remember-me token will be usable from any user agent until such time as the token expires. Thisis the same
issue as with digest authentication. If aprincipal is aware atoken has been captured, they can easily change
their password and immediately invalidate all remember-me tokens on issue. However, if more significant
security is needed arolling token approach should be used (this would require a database) or remember-me
services should simply not be used.

TokenBasedRenenber MeSer vi ces generates a Remenber MeAut hent i cat i onToken, Which is processed by
Renmenber MeAut hent i cat i onProvi der . A key is shared between this authentication provider and the
TokenBasedRenenber MeSer vi ces. In addition, TokenBasedRemenber MeSer vi ces requires A UserDetailsService
from which it can retrieve the username and password for signature comparison purposes, and generate the
Rermenber MeAut hent i cat i onToken t0 contain the correct Gr ant edAut hori t y[]s. Some sort of logout command
should be provided by the application (typicaly viaa JSP) that invalidates the cookie upon user request. See
the Contacts Sample application's| ogout . j sp for an example.

The beans required in an application context to enable remember-me services are as follows:

<bean i d="remenber MeProcessi ngFilter"
cl ass="org. acegi security. ui.renmenber ne. Renenber MeProcessi ngFilter">

<property name="renmenber MeServi ces"><ref |ocal ="renmenber MeServi ces"/ ></ property>
</ bean>

<bean i d="remenber MeServi ces" cl ass="org. acegi security.ui.remenberne. TokenBasedRenenber MeSer vi ces" >
<property name="user Detail sServi ce"><ref |ocal ="jdbcDaol npl "/ ></property>
<property name="key"><val ue>spri ngRocks</ val ue></ property>

</ bean>

<bean i d="renmenber MeAut henti cati onProvi der"

cl ass="org. acegi security. providers.renmenber ne. Renenber MeAut hent i cati onPr ovi der ">
<property name="key"><val ue>spri ngRocks</val ue></ property>

</ bean>

100RC1

Security

Don't forget to add your Remenber MeSer vi ces implementation to your

Aut hent i cat i onPr ocessi ngFi | t er. set Remerrber MeSer vi ces() property, include the

Renmenber MeAut hent i cat i onProvi der iNyour Aut hent i cati onManager . set Provi ders() list, and add acall to
Remenber MePr ocessi ngFi | t er iNtO your Fi | t er Chai nProxy (typicaly immediately after your

Aut hent i cat i onProcessi ngFi | ter).

1.10.7. Well-Known Locations

Prior to release 0.8.0, Acegi Security referred to "well-known locations' in discussions about storing the

Aut hent i cat i on. This approach did not explicitly separate the function of Ht t pSessi on storage of

Securi t yCont ext Hol der contents from the processing of authentication requests received through various
protocols. In addition, the previous approach did not facilitate storage of non-Aut hent i cat i on objects between
requests, which was limiting usefulness of the Secur i t yCont ext Hol der System to member of the community.
For these reasons, the notion of well-known locations was abandoned, the

Ht t pSessi onCont ext | nt egr ati onFi | t er was established, and the purpose of authentication processing
mechanisms was explicitly defined and limited to interaction with the Securi t yCont ext Hol der only. Thereis
no need to refer to well-known locations any more and we hope this clearer separation of responsibilities
enhances understanding of the design.

1.11. Container Adapters

1.11.1. Overview

Very early versions of the Acegi Security System for Spring exclusively used Container Adapters for
interfacing authentication with end users. Whilst this worked well, it required considerabl e time to support
multiple container versions and the configuration itself was relatively time-consuming for developers. For this
reason the HTTP Form Authentication and HTTP Basic Authentication approaches were developed, and are
today recommended for ailmost all applications.

Container Adapters enable the Acegi Security System for Spring to integrate directly with the containers used
to host end user applications. Thisintegration means that applications can continue to leverage the
authentication and authorization capabilities built into containers (such asi sUser | nRol e() and form-based or
basic authentication), whilst benefiting from the enhanced security interception capabilities provided by the
Acegi Security System for Spring (it should be noted that Acegi Security also offers

Cont ext Hol der Awar eRequest W apper to deliver i sUser | nRol e() and similar Servlet Specification
compatibility methods).

The integration between a container and the Acegi Security System for Spring is achieved through an adapter.
The adapter provides a container-compatible user authentication provider, and needs to return a
container-compatible user object.

The adapter isinstantiated by the container and is defined in a container-specific configuration file. The adapter
then loads a Spring application context which defines the normal authentication manager settings, such asthe
authentication providers that can be used to authenticate the request. The application context is usually named
acegi security. xnl and is placed in a container-specific location.

The Acegi Security System for Spring currently supports Jetty, Catalina (Tomcat), JBoss and Resin. Additional
container adapters can easily be written.

1.11.2. Adapter Authentication Provider

Acegi Security System for Spring 36

Security

Asisawaysthe case, the container adapter generated Aut hent i cat i on object still needs to be authenticated by
an Aut hent i cat i onManager When requested to do so by the Abst r act Securi tyl nterceptor. The

Aut hent i cat i onManager needs to be certain the adapter-provided Aut hent i cat i on object isvalid and was
actually authenticated by atrusted adapter.

Adapters create Aut hent i cat i on objects which are immutable and implement the Aut hByAdapt er interface.
These objects store the hash of akey that is defined by the adapter. This allowsthe Aut hent i cat i on object to
be validated by the Aut hBy Adapt er Provi der . This authentication provider is defined as follows:

<bean i d="aut hByAdapt er Provi der" cl ass="org. acegi security. adapters. Aut hByAdapt er Provi der ">
<property name="key"><val ue>ny_passwor d</ val ue></ property>
</ bean>

The key must match the key that is defined in the contai ner-specific configuration file that starts the adapter.
The Aut hByAdapt er Provi der automatically accepts asvalid any Aut hByAdapt er implementation that returns
the expected hash of the key.

To reiterate, this means the adapter will perform the initial authentication using providers such as

DaoAut hent i cat i onProvi der, returning an Aut hByAdapt er instance that contains a hash code of the key. Later,
when an application calls a security interceptor managed resource, the Aut hByAdapt er instance in the

Securi tyCont ext inthe Securi tyCont ext Hol der will be tested by the application's Aut hBy Adapt er Pr ovi der .
There is no requirement for additional authentication providers such as DaoAut hent i cat i onProvi der within
the application-specific application context, as the only type of Aut henti cat i on instance that will be presented
by the application is from the container adapter.

Classloader issues are frequent with containers and the use of container adaptersillustrates this further. Each
container requires a very specific configuration. The installation instructions are provided below. Once
installed, please take the time to try the sample application to ensure your container adapter is properly
configured.

When using container adapters with the DaoAut hent i cat i onPr ovi der , ensure you set its

forcePrinci pal AsString property totrue.

1.11.3. Catalina (Tomcat) Installation

The following was tested with Jakarta Tomcat 4.1.30 and 5.0.19.
$CATALI NA_HOME refersto the root of your Catalina (Tomcat) installation.

Edit your $CATALI NA_HOMVE/ conf/ server . xni file so the <Engi ne> section contains only one active <Real m»
entry. An example realm entry:

<Real m cl assNane="or g. acegi security. adapt ers. catal i na. Cat al i naAcegi User Real nf'
appCont ext Locat i on="conf/acegi security.xm"
key="ny_password" />

Be sure to remove any other <Real me entry from your <Engi ne> section.
Copy acegi security. xm iNto $CATALI NA HOVE/ conf .
Copy acegi - security-catalina-XX. jar intO $CATALI NA HOVE/ server/lib.

Copy the following filesinto $CATALI NA_HOVE/ conmron/ | i b:

100RC1

Security

* aopalliance.jar

® spring.jar

* comons-codec. jar
* Dburlap.jar

* hessian.jar

None of the above JAR files (or acegi - securi ty- XX. j ar) should bein your application's wes- | NF/ 1i b. The
realm name indicated in your web. xn does not matter with Catalina.

We have received reports of problems using this Container Adapter with Mac OS X. A work-around isto use a
script such asfollows:

#!/bi n/ sh

export CATALI NA HOVE="/Li brary/ Tontat"
export JAVA HOVE="/Li brary/ Java/ Horme"
cd /

$CATALI NA_HOME/ bi n/ st art up. sh

1.11.4. Jetty Installation

The following was tested with Jetty 4.2.18.
$JETTY_HOME refersto the root of your Jetty installation.

Edit your $JETTY_HOVE/ etc/jetty. xn file sothe<Configure cl ass> section has anew addRealm call:

<Cal | nane="addReal m'>
<Ar g>
<New cl ass="org. acegi security. adapters.jetty.JettyAcegi User Real n' >
<Ar g>Spri ng Powered Real nx/Arg>
<Ar g>ny_passwor d</ Ar g>
<Ar g>et c/ acegi security. xm </ Arg>
</ New>
</ Arg>
</Cal | >

Copy acegi security. xm iNt0 $JETTY_HOME/ et c.

Copy thefollowing filesinto $JETTY_HOMVE/ ext :

* aopalliance.jar

e commons-| oggi ng.j ar

® spring.jar

®* acegi-security-jetty-XX jar
* comons-codec. jar

* burlap.jar

Acegi Security System for Spring 38

Security

* hessian.jar

None of the above JAR files (or acegi - securi ty- XX. j ar) should be in your application's wes- | NF/ | i b. The
realm name indicated in your web. xmi does matter with Jetty. Theweb. xmi must express the same
<real m nanme> asyour jetty. xnl (inthe example above, "Spring Powered Realm™).

1.11.5. JBoss Installation

The following was tested with JBoss 3.2.6.
$JB0SS_HOME refersto the root of your JBoss installation.
There are two different ways of making spring context available to the Jooss integration classes.

The first approach is by editing your $JB0SS_HOVE/ ser ver / your _confi g/ conf /1 ogi n-config. xm file so that
it contains a new entry under the <Pol i cy> section:

<application-policy nane = "SpringPower edReal ni' >
<aut henti cati on>
<l ogi n- nodul e code = "org. acegi security. adapters.jboss. JbossSpri ngLogi nModul e"
flag = "required">

"appCont ext Locat i on" >acegi security.xm </ nodul e- opti on>
"key" >my_passwor d</ nodul e- opti on>

<nmodul e- opti on nanme
<nmodul e- opti on name

</ | ogi n- nodul e>

</ aut henti cati on>

</ appl i cation-policy>

Copy acegi security. xn into $JBOSS_HOVE/ ser ver / your _confi g/ conf .

In this configuration acegi security. xn contains the spring context definition including all the authentication
manager beans. Y ou have to bear in mind though, that Securi t yCont ext is created and destroyed on each login
reguest, so the login operation might become costly. Alternatively, the second approach is to use Spring
singleton capabilities through

org. spri ngframewor k. beans. f act ory. access. Si ngl et onBeanFact or yLocat or . The required configuration
for this approach is:

<application-policy nane = "SpringPower edReal ni' >
<aut henti cati on>
<l ogi n- nodul e code = "org. acegi security. adapters.jboss. JbossSpri ngLogi nModul e"
flag = "required">

<nmodul e-opti on name = "singl etonl d">spri ngReal n/ nodul e- opti on>
<nmodul e- option nane = "key">ny_passwor d</ nodul e- opti on>
<nodul e-opti on nane = "authenticati onManager " >aut henti cati onManager </ nodul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cation-policy>

In the above code fragment, aut hent i cat i onManager isahelper property that defines the expected name of the
Aut hent i cat i onManager in case you have several defined in the |oC container. The si ngl et onl d property
references abean defined in abeanRef Fact ory. xni file. Thisfile needsto be available from anywhere on the
JBoss classpath, including $3BOSS_HOVE/ ser ver / your _confi g/ conf . The beanRef Fact ory. xm contains the
following declaration:

<beans>
<bean i d="springReal ' singleton="true" |lazy-init="true"
cl ass="org. spri ngframewor k. cont ext . support . d assPat hXm Appl i cati onCont ext " >
<constructor - ar g>

100RC1

Security

<list>
<val ue>acegi security. xm </ val ue>
</list>
</ constructor-arg>
</ bean>
</ beans>

Finally, irrespective of the configuration approach you need to copy the following filesinto
$JBOSS_HOWE/ server/your_config/lib:

* aopalliance.jar

® spring.jar

® acegi-security-jboss-XX. jar
* comons-codec. jar

* burlap.jar

* hessian.jar

None of the above JAR files (or acegi - securi ty- XX. j ar) should bein your application's wes- | NF/ 1i b. The
realm name indicated in your web. xm does not matter with JBoss. However, your web application's

VEB- | NF/ j boss-web. xmi must express the same <securi t y- domai n> asyour | ogi n- conf i g. xnl . For example,
to match the above example, your j boss-web. xm would look like this:

<j boss- web>
<security-domai n>j ava: / j aas/ Spri ngPower edReal n</ security-domai n>
</ j boss- web>

1.11.6. Resin Installation

The following was tested with Resin 3.0.6.
$RESI N_HOME refersto the root of your Resin installation.

Resin provides several ways to support the container adapter. In the instructions below we have elected to
maximise consistency with other container adapter configurations. Thiswill allow Resin usersto simply deploy
the sample application and confirm correct configuration. Devel opers comfortable with Resin are naturally able
to useits capabilities to package the JARs with the web application itself, and/or support single sign-on.

Copy the following filesinto $RESI N_HOVE/ | i b:

* aopalliance.jar

e commons-| oggi ng.j ar

® spring.jar

® acegi-security-resin-XX jar

* comons-codec. jar

Acegi Security System for Spring 40

Security

* burlap.jar
* hessian.jar

Unlike the container-wide acegi securi ty. xn files used by other container adapters, each Resin web
application will contain its own WEB- | NF/ r esi n- acegi security. xnl file. Each web application will also
contain aresi n-web. xni file which Resin usesto start the container adapter:

<web- app>
<aut henti cat or >
<type>org. acegi security. adapt ers. resin. Resi nAcegi Aut henti cat or </ type>
<init>
<app- cont ext -1 ocati on>WEB- | NF/ r esi n- acegi security. xm </ app- cont ext -1 ocati on>
<key>ny_passwor d</ key>
</init>
</ aut henti cat or >
</ web- app>

With the basic configuration provided above, none of the JAR fileslisted (or acegi - securi ty- XX. j ar) should
be in your application's WeB- | NF/ | i b. The realm name indicated in your web. xmi does not matter with Resin, as
the relevant authentication classis indicated by the <aut hent i cat or > Setting.

1.12. Yale Central Authentication Service (CAS) Single Sign On

1.12.1. Overview

Y ale University produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,

Y ale's Central Authentication Service is open source, widely used, simple to understand, platform independent,
and supports proxy capabilities. The Acegi Security System for Spring fully supports CAS, and provides an
easy migration path from single-application deployments of Acegi Security through to multiple-application
deployments secured by an enterprise-wide CAS server.

Y ou can learn more about CAS at ht t p: / / www. yal e. edu/ t p/ aut h/ . You will need to visit thisURL to
download the CAS Server files. Whilst the Acegi Security System for Spring includes two CASlibrariesin the
"-with-dependencies" ZIP file, you will still need the CAS Java Server Pages and web. xm to customise and
deploy your CAS server.

1.12.2. How CAS Works

Whilst the CAS web site above contains two documents that detail the architecture of CAS, we present the
general overview again here within the context of the Acegi Security System for Spring. The following refersto
CAS 2.0, being the version of CASthat Acegi Security System for Spring supports.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server issimply a standard WAR
file, so thereisn't anything difficult about setting up your server. Inside the WAR file you will customise the
login and other single sign on pages displayed to users. Y ou will also need to specify in the web.xml a

Passwor dHandl er . The Passwor dHandl er has a simple method that returns a boolean as to whether agiven
username and password isvalid. Your Passwor dHandl er implementation will need to link into some type of
backend authentication repository, such as an LDAP server or database.

If you are already running an existing CAS server instance, you will have already established a
Passwor dHandl er . If you do not already have a Passwor dHandl er , you might prefer to use the Acegi Security

100RC1

Security

System for Spring CasPasswor dHandl er class. This class delegates through to the standard Acegi Security

Aut hent i cat i onManager , enabling you to use a security configuration you might already have in place. Y ou do
not need to use the CasPasswor dHandl er class on your CAS server if you do not wish. The Acegi Security
System for Spring will function asa CAS client successfully irrespective of the Passwor dHandl er you've
chosen for your CAS server.

Apart from the CAS server itself, the other key player is of course the secure web applications deployed
throughout your enterprise. These web applications are known as "services'. There are two types of services:
standard services and proxy services. A proxy serviceis able to request resources from other services on behalf
of the user. Thiswill be explained more fully later.

Services can be developed in alarge variety of languages, dueto CAS 2.0's very light XML -based protocol.
The Yae CAS home page contains a clients archive which demonstrates CAS clientsin Java, Active Server
Pages, Perl, Python and others. Naturally, Java support is very strong given the CAS server iswritten in Java.
Y ou do not need to use any of CAS client classes in applications secured by the Acegi Security System for
Spring. Thisis handled transparently for you.

The basic interaction between aweb browser, CAS server and an Acegi Security for System Spring secured
serviceisasfollows:

1. Theweb user is browsing the service's public pages. CAS or Acegi Security is not involved.

2. Theuser eventually requests a page that is either secure or one of the beansit usesis secure. Acegi
Security's Securi t yEnf or cement Fi | t er Will detect the Aut hent i cat i onExcepti on.

3. Becausethe user's Aut hent i cat i on object (or lack thereof) caused an Aut hent i cati onExcepti on, the
Securi t yEnfor cement Fi | t er will call the configured Aut hent i cati onEnt ryPoi nt . If using CAS, this
will bethe CasProcessi ngFi | t er Ent r yPoi nt class.

4. TheCasProcessingFil terEntry point will redirect the user's browser to the CAS server. It will also
indicate aser vi ce parameter, which is the callback URL for the Acegi Security service. For example, the
URL to which the browser is redirected might be
https://ny. conpany. conl cas/ | ogi n?servi ce=htt ps¥8AYR2F¥2Fser ver 3. conpany. conb2Fwebapp%2Fj _acegi _cas_s

5. After the user's browser redirectsto CAS, they will be prompted for their username and password. If the
user presents a session cookie which indicates they've previously logged on, they will not be prompted to
login again (there is an exception to this procedure, which we'll cover later). CAS will use the
Passwor dHandl er discussed above to decide whether the username and password is valid.

6. Upon successful login, CAS will redirect the user's browser back to the original service. It will also
include ati cket parameter, which isan opaque string representing the "service ticket". Continuing our
earlier example, the URL the browser isredirected to might be
https://server 3. conmpany. com webapp/j _acegi _cas_security_check?ti cket =ST- 0- ER94xMImMm6pha35CQRoZ.

7. Backinthe service web application, the CaspPr ocessi ngFi | t er isawayslistening for requests to
/j _acegi _cas_security_check (thisisconfigurable, but we'll use the defaultsin thisintroduction). The
processing filter will construct a User nanmePasswor dAut hent i cat i onToken representing the service ticket.
The principa will be equal to CasPr ocessi ngFi | t er. CAS_STATEFUL_| DENTI FI ER, Whilst the credentials
will be the service ticket opagque value. This authentication request will then be handed to the configured
Aut henti cati onManager .

8. Theaut henti cati onvanager implementation will be the Provi der Manager , which isin turn configured
with the CasAut hent i cat i onProvi der . The CasAut hent i cati onProvi der only responds to
User namePasswor dAut hent i cat i onTokens containing the CAS-specific principal (such as

Acegi Security System for Spring 42

Security

10.

11.

12.

13.

14.

15.

16.

17.

18.

CasProcessi ngFi | t er. CAS_STATEFUL_| DENTI FI ER) and CasAut hent i cat i onTokens (discussed | ater).

CasAut hent i cat i onProvi der will validate the service ticket using aTi cket Val i dat or implementation.

Acegi Security includes one implementation, the CasPr oxyTi cket Val i dat or . Thisimplementation aticket

validation classincluded in the CAS client library. The CasPr oxyTi cket Val i dat or makesaHTTPS

request to the CAS server in order to validate the service ticket. The CasPr oxyTi cket Val i dat or may also

include a proxy callback URL, which isincluded in this example:

https:// my. conpany. coni cas/ proxyVal i dat e?ser vi ce=ht t ps¥8A¥RFY2Fser ver 3. conpany. cont2Fwebapp%2Fj _ace

Back on the CAS server, the proxy validation request will be received. If the presented service ticket
matches the service URL the ticket was issued to, CAS will provide an affirmative responsein XML
indicating the username. If any proxy was involved in the authentication (discussed below), the list of
proxiesis aso included in the XML response.

[OPTIONAL] If the request to the CAS validation service included the proxy callback URL (in the pgt Ur |

parameter), CAS will include apgt | ou string in the XML response. Thispgt | ou represents a

proxy-granting ticket IOU. The CAS server will then create its own HTTPS connection back to the

pgt Ur | . Thisisto mutually authenticate the CAS server and the claimed service URL. The HTTPS

connection will be used to send a proxy granting ticket to the original web application. For example,
https://server3. conpany. com webapp/ casPr oxy/ recept or ?pgt | ou=PGTI OU- 0- ROzl gr | 4pdAQMvIWOBvnNpevwgSt b
We suggest you use CAS' ProxyTi cket Recept or Servlet to receive these proxy-granting tickets, if they are

required.

The CasPr oxyTi cket Val i dat or Will parse the XML received from the CAS server. It will return to the
CasAut hent i cati onProvi der aTi cket Response, Which includes the username (mandatory), proxy list (if
any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

Next casAut hent i cati onProvi der Will call aconfigured CasPr oxyDeci der . The CasPr oxyDeci der
indicates whether the proxy list in the Ti cket Response is acceptable to the service. Several
implementations are provided with the Acegi Security System: Rej ect Pr oxyTi cket s, Accept AnyCasPr oxy
and NanmedCasPr oxyDeci der . These names are largely self-explanatory, except NamedCasPr oxyDeci der
which alowsali st of trusted proxies to be provided.

CasAut hent i cati onProvi der Will next request a CasAut hori ti esPopul at or to advisethe

G ant edAut hor i t y objects that apply to the user contained in the Ti cket Response. Acegi Security
includes abDaoCasAut hori ti esPopul at or Which simply usesthe User Det ai | sSer vi ce infrastructure to
find the User Det ai | s and their associated Gr ant edAut hor i t yS. Note that the password and
enabled/disabled status of User Det ai | s returned by the User Det ai | sSer vi ce areignored, asthe CAS
server is responsible for authentication decisions. DaoCasAut hori ti esPopul at or iSonly concerned with
retrieving the & ant edAut hori tys.

If there were no problems, CasAut hent i cat i onProvi der constructs a CasAut hent i cati onToken including
the details contained in the Ti cket Response and the Gr ant edAut hori t yS. The CasAut henti cat i onToken
contains the hash of akey, so that the CasAut hent i cati onPr ovi der knows it created it.

Control then returnsto CasPr ocessi ngFi | t er , which places the created CasAut hent i cati onToken into
the Ht t pSessi on attribute named
Ht t pSessi onl ntegrati onFilter. ACEG _SECURI TY_AUTHENTI CATI ON_KEY.

The user's browser is redirected to the original page that caused the Aut hent i cat i onExcept i on.

Asthe Aut hent i cati on object isnow in the well-known location, it is handled like any other
authentication approach. Usually the Ht t pSessi onl nt egr at i onFi | t er will be used to associate the
Aut hent i cat i on object with the Securi t yCont ext Hol der for the duration of each request.

100RC1

Security

It's good that you're still here! It might sound involved, but you can relax as the Acegi Security System for
Spring classes hide much of the complexity. Let's now look at how thisis configured.

1.12.3. CAS Server Installation (Optional)

As mentioned above, the Acegi Security System for Spring includes a Passwor dHandl er that bridges your
existing Aut hent i cat i onManager into CAS. Y ou do not need to use this Passwor dHandl er to use Acegi
Security on the client side (any CAS Passwor dHandl er will do).

Toinstall, you will need to download and extract the CAS server archive. We used version 2.0.12. There will
be a/web directory in the root of the deployment. Copy an appl i cat i onCont ext . xnd containing your

Aut hent i cat i onManager aswell asthe CasPasswor dHandl er into the/ web/ VEB- | NF directory. A sample
appl i cati onCont ext . xni isincluded below:

<bean i d="i nMenoryDaol npl " cl ass="org. acegi security.userdetails. menory. | nMenoryDaol npl ">
<property name="user Map">
<val ue>
mar i ssa=koal a, ROLES_| GNORED_BY_CAS
di anne=enmu, ROLES | GNORED _BY_CAS
scot t =wonbat , ROLES_| GNORED_BY_CAS
pet er =opal , di sabl ed, ROLES_| GNORED_BY_CAS
</ val ue>
</ property>
</ bean>

<bean i d="daoAut henti cati onProvi der"
cl ass="org. acegi security. provi ders. dao. DaoAut henti cati onProvi der">

<property name="userDetail sServi ce"><ref bean="i nMenoryDaol npl "/ ></property>
</ bean>

<bean i d="aut henti cati onManager" cl ass="org. acegi security. providers. Provi der Manager" >
<property nanme="provi ders">
<list>
<ref bean="daoAut henti cati onProvider"/>
</list>
</ property>
</ bean>

<bean i d="casPasswor dHandl er" cl ass="org. acegi security. adapters. cas. CasPasswor dHandl er ">
<property nanme="aut henti cati onManager"><ref bean="authenticati onManager"/></property>
</ bean>

Note the granted authorities are ignored by CAS because it has no way of communicating the granted
authorities to calling applications. CASis only concerned with username and passwords (and the
enabled/disabled status).

Next you will need to edit the existing / web/ VEB- | NF/ web. xni file. Add (or edit in the case of the aut hHandl er
property) the following lines:

<cont ext - par an>

<par am nane>edu. yal e. i ts.tp. cas. aut hHandl er </ par am nane>

<par am val ue>or g. acegi security. adapt ers. cas. CasPasswor dHandl| er Pr oxy</ par am val ue>
</ cont ext - par an>

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ \EEB- | NF/ appl i cat i onCont ext . xm </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-cl ass>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

Acegi Security System for Spring 44

Security

Copy thespring. jar and acegi - security.jar filesinto/web/ VEB- I NF/ | i b. Now usetheant dist taskin
thebui | d. xni intheroot of the directory structure. Thiswill create/ I'i b/ cas. war , which is ready for
deployment to your servlet container.

Note CAS heavily relieson HTTPS. Y ou can't even test the system without a HTTPS certificate. Whilst you
should refer to your web container's documentation on setting up HTTPS, if you need some additional help or a
test certificate you might like to check the sanpl es/ cont act s/ et ¢/ ssl directory.

1.12.4. CAS Acegi Security System Client Installation

The web application side of CAS is made easy due to the Acegi Security System for Spring. It is assumed you
already know the basics of using the Acegi Security System for Spring, so these are not covered again below.
Only the CA S-specific beans are mentioned.

Y ou will need to add a Ser vi cePr opert i es bean to your application context. This represents your service:

<bean i d="servi ceProperties" class="org.acegi security.ui.cas.ServiceProperties">
<property

nane="servi ce"><val ue>https://| ocal host: 8443/ cont act s-cas/j _acegi _cas_security_check</val ue></ property>

<property name="sendRenew'><val ue>f al se</val ue></ property>
</ bean>

The servi ce must equal a URL that will be monitored by the CasProcessi ngFi | t er . The sendRenew defaults
to false, but should be set to true if your application is particularly sensitive. What this parameter doesistell the
CAS login service that asingle sign on login is unacceptable. Instead, the user will need to re-enter their
username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process:

<bean i d="casProcessingFilter" class="org.acegi security.ui.cas.CasProcessingFilter">
<property name="aut henti cati onManager"><ref bean="aut henti cati onManager"/></property>
<property nanme="aut henticationFail ureUrl"><val ue>/ casfail ed. j sp</val ue></ property>
<property name="defaul t Tar get Ur|l " ><val ue>/ </ val ue></ pr operty>
<property name="filterProcessesUr|"><val ue>/j _acegi cas_security_check</val ue></ property>
</ bean>

<bean i d="securityEnforcenmentFilter"
cl ass="org. acegi security.intercept.web. SecurityEnforcenmentFilter">
<property name="filterSecuritylnterceptor"><ref bean="filterlnvocationlnterceptor"/></property>
<property nanme="aut henti cati onEntryPoi nt"><ref bean="casProcessingFilterEntryPoint"/></property>
</ bean>

<bean i d="casProcessi ngFi |l terEntryPoint"

cl ass="org. acegi security. ui.cas. CasProcessingFil terEntryPoi nt">
<property name="l|ogi nUrl "><val ue>https://| ocal host: 8443/ cas/| ogi n</ val ue></ property>
<property name="servi ceProperties"><ref bean="serviceProperties"/></property>

</ bean>

Y ou will also need to add the CasPr ocessi ngFi | t er to web.xml:

<filter>
<filter-nane>Acegi CAS Processing Filter</filter-nanme>
<filter-class>org.acegisecurity.util.FilterToBeanProxy</filter-class>
<init-paranr
<par am nanme>t ar get Cl ass</ par am nanme>
<par am val ue>or g. acegi security. ui.cas. CasProcessi ngFi |l t er </ param val ue>
</init-paranp
</filter>

<filter-mppi ng>

100RC1

Security

<filter-nanme>Acegi CAS Processing Filter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mppi ng>

The CasProcessi ngFi | t er hasvery similar properties to the Aut hent i cati onProcessi ngFi | ter (used for
form-based logins). Each property is self-explanatory.

For CASto operate, the Securi t yEnf or cenent Fi | t er must have itSaut hent i cati onEnt ryPoi nt property set
to the CasPr ocessi ngFi | t er Ent r yPoi nt bean.

The CasProcessi ngFi | t er Ent ryPoi nt must refer to the Ser vi ceProperti es bean (discussed above), which
provides the URL to the enterprise's CAS login server. Thisiswhere the user's browser will be redirected.

Next you need to add an Aut hent i cat i onManager that uses CasAut henti cati onProvi der and its collaborators:

<bean id="aut henticati onManager" cl ass="org. acegi security. providers. Provi der Manager ">
<property nanme="providers">
<list>
<ref bean="casAut henticati onProvider"/>
</list>
</ property>
</ bean>

<bean i d="casAut henti cati onProvi der"

cl ass="org. acegi security. providers. cas. CasAut henti cati onProvi der" >
<property name="casAut horiti esPopul at or"><ref bean="casAuthoriti esPopul ator"/></property>
<property name="casProxyDeci der"><ref bean="casProxyDeci der"/></property>
<property name="ti cket Val i dat or " ><ref bean="casProxyTi cket Val i dator"/></property>
<property nanme="st at el essTi cket Cache"><ref bean="st at el essTi cket Cache"/ ></ property>
<property nanme="key"><val ue>ny_password_for_this_auth_provi der_onl y</val ue></ property>

</ bean>

<bean i d="casProxyTi cket Val i dat or"

cl ass="org. acegi security. providers.cas.ticketvalidator.CasProxyTi cket Val i dat or">
<property name="casVal i dat e"><val ue>htt ps://| ocal host: 8443/ cas/ proxyVal i dat e</ val ue></ property>
<property

nanme="proxyCal | backUr| " ><val ue>https://| ocal host: 8443/ cont act s- cas/ casProxy/ recept or </ val ue></ property>
<property name="servi ceProperties"><ref bean="serviceProperties"/></property>
<l-- <property

name="t r ust St or e" ><val ue>/ sone/ pat h/ t o/ your/li b/ security/cacerts</val ue></property> -->

</ bean>

<bean i d="cacheManager" cl ass="org. spri ngfranmewor k. cache. ehcache. EhnCacheManager Fact or yBean" >
<property nanme="configLocation">
<val ue>cl asspat h: / ehcache-f ai | saf e. xm </ val ue>
</ property>
</ bean>

<bean i d="ti cket CacheBackend" cl ass="org. spri ngframework. cache. ehcache. EnCacheFact or yBean" >
<property nanme="cacheManager">
<ref |ocal ="cacheManager"/>
</ property>
<property name="cacheNane">
<val ue>ti cket Cache</ val ue>
</ property>
</ bean>

<bean id="st at el essTi cket Cache"

cl ass="org. acegi security. providers. cas. cache. EnCacheBasedTi cket Cache" >
<property nanme="cache"><ref |ocal ="ti cket CacheBackend"/ ></property>

</ bean>

<bean i d="casAut horitiesPopul ator"

cl ass="org. acegi security. providers. cas. popul at or. DaoCasAut hori ti esPopul at or ">
<property nane="userDet ai | sServi ce"><ref bean="i nMenoryDaol npl "/ ></ property>

</ bean>

<bean i d="casProxyDeci der" cl ass="org. acegi security. providers. cas. proxy. Rej ect ProxyTi ckets"/>

Acegi Security System for Spring 46

Security

The beans are all reasonable self-explanatory if you refer back to the "How CAS Works' section. Careful
readers might notice one surprise: the st at el essTi cket Cache property of the CasAut henti cati onProvi der .
Thisisdiscussed in detail in the "Advanced CAS Usage" section.

Note the CasPr oxyTi cket Val i dat or has aremarked out t r ust St or e property. This property might be helpful
if you experience HTTPS certificate issues. Also note the proxyCal | backUr | iS Set so the service can receive a
proxy-granting ticket. As mentioned above, thisis optional and unnecessary if you do not require
proxy-granting tickets. If you do use this feature, you will need to configure a suitable servlet to receive the
proxy-granting tickets. We suggest you use CAS Pr oxyTi cket Recept or by adding the following to your web
application'sweb. xni :

<servl et >

<servl et - name>caspr oxy</ ser vl et - name>

<servl et-class>edu.yal e.its.tp.cas. proxy. ProxyTi cket Recept or </ servl et -cl ass>
</servl et >

<servl et - mappi ng>
<servl et - nanme>caspr oxy</ ser vl et - nane>
<url - pattern>/ casProxy/*</url -pattern>
</ servl et - mappi ng>

This completes the configuration of CAS. If you haven't made any mistakes, your web application should
happily work within the framework of CAS single sign on. No other parts of the Acegi Security System for
Spring need to be concerned about the fact CA'S handled authentication.

Thereisaso acont act s- cas. war filein the sample applications directory. This sample application uses the
above settings and can be deployed to see CAS in operation.

1.12.5. Advanced CAS Usage

The casAut hent i cat i onProvi der distinguishes between stateful and stateless clients. A stateful clientis
considered any that originates viathe CasPr ocessi ngFi | ter . A stateless client is any that presents an
authentication request viathe User namePasswor dAut hent i cat i onToken With aprincipal equal to
CasProcessi ngFi | t er. CAS_STATELESS_| DENTI FI ER.

Stateless clients are likely to be viaremoting protocols such as Hessian and Burlap. The

Basi cProcessi ngFi | ter isstill used in this case, but the remoting protocol client is expected to present a
username equal to the static string above, and a password equal to a CAS service ticket. Clients should acquire
a CAS serviceticket directly from the CAS server.

Because remoting protocols have no way of presenting themselves within the context of aHt t pSessi on, itisn't
possibleto rely on the Ht t pSessi on's

Ht t pSessi onl ntegrati onFi |l ter. ACEG _SECURI TY_AUTHENTI CATI ON_KEY attribute to locate the

CasAut hent i cat i onToken. Furthermore, because the CAS server invalidates a service ticket after it has been
validated by the Ti cket Val i dat or , presenting the same service ticket on subsequent requests will not work. It
issimilarly very difficult to obtain a proxy-granting ticket for aremating protocol client, asthey are often
deployed on client machines which rarely have HTTPS URL s that would be accessible to the CAS server.

One obvious option isto not use CAS at al for remoting protocol clients. However, this would eliminate many
of the desirable features of CAS.

Asamiddle-ground, the CasAut hent i cat i onProvi der USeSa St at el essTi cket Cache. Thisis used solely for
requests with a principal equal to CasProcessi ngFi | t er. CAS_STATELESS_| DENTI FI ER. What happensisthe
CasAut hent i cat i onPr ovi der Will store the resulting CasAut hent i cat i onToken inthe St at el essTi cket Cache,

100RC1

Security

keyed on the service ticket. Accordingly, remoting protocol clients can present the same service ticket and the
CasAut hent i cat i onProvi der Will not need to contact the CAS server for validation (aside from the first
request).

The other aspect of advanced CAS usage involves creating proxy tickets from the proxy-granting ticket. As
indicated above, we recommend you use CAS ProxyTi cket Recept or t0 receive these tickets. The

ProxyTi cket Recept or provides a static method that enables you to obtain a proxy ticket by presenting the
proxy-granting 10U ticket. Y ou can obtain the proxy-granting 10U ticket by calling

CasAut henti cati onToken. get ProxyG anti ngTi cket | ou() .

It is hoped you find CAS integration easy and useful with the Acegi Security System for Spring classes.
Welcome to enterprise-wide single sign on!

1.13. X509 Authentication

1.13.1. Overview

The most common use of X509 certificate authentication isin verifying the identity of a server when using
SSL, most commonly when using HTTPS from a browser. The browser will automatically check that the
certificate presented by a server has been issued (ie digitally signed) by one of alist of trusted certificate
authorities which it maintains.

Y ou can also use SSL with “mutual authentication”; the server will then request avalid certificate from the
client as part of the SSL handshake. The server will authenticate the client by checking that it's certificate is
signed by an acceptable authority. If avalid certificate has been provided, it can be obtained through the servlet
API in an application. The Acegi Security X509 module extracts the certificate using afilter and passesit to the
configured X509 authentication provider to allow any additional application-specific checks to be applied. It
also maps the certificate to an application user and loads that user's set of granted authorities for use with the
standard Acegi Security infrastructure.

Y ou should be familiar with using certificates and setting up client authentication for your servlet container
before attempting to use it with Acegi Security. Most of the work isin creating and installing suitable
certificates and keys. For example, if you're using Tomcat then read the instructions here
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/ssl -howto.html. It's important that you get this working before
trying it out with Acegi Security.

1.13.2. X509 with Acegi Security

With X509 authentication, there is no explicit login procedure so the implementation isrelatively simple; there
is no need to redirect requests in order to interact with the user. As aresult, some of the classes behave slightly
differently from their equivalentsin other packages. For example, the default “entry point” class, which is
normally responsible for starting the authentication process, is only invoked if the certificate is rejected and it
always returns an error to the user. With a suitable bean configuration, the normal sequence of eventsisas
follows

1. Thexs09Processi ngFil ter extractsthe certificate from the request and usesit as the credentials for an
authentication request. The generated authentication request is an X509Aut hent i cat i onToken. The request
is passed to the authentication manager.

2. TheXxs509Aut henti cati onProvi der receivesthe token. Its main concern isto obtain the user information
(in particular the user's granted authorities) that matches the certificate. It delegates this responsibility to

Acegi Security System for Spring 48

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/ssl-howto.html

Security

an X509Aut hori ti esPopul at or.

3. The populator's single method, get User Det ai | s(X509Certificate userCertificate) isinvoked.
Implementations should return aUser Det ai | s instance containing the array of Gr ant edAut hori ty objects
for the user. This method can also choose to reject the certificate (for exampleif it doesn't contain a
matching user name). In such cases it should throw aBadCr edent i al sExcepti on. A DAO-based
implementation, DaoX509Aut hori ti esPopul at or , is provided which extracts the user's name from the
subject “common name” (CN) in the certificate. It also allows you to set your own regular expression to
match adifferent part of the subject's distinguished name. A UserDetailsServiceis used to load the user
information.

4. If everything has gone smoothly then there should be avalid Aut hent i cat i on object in the secure context
and the invocation will procede as normal. If no certificate was found, or the certificate was rejected, then
the Securi t yEnf or cenment Fi | t er will invoke the X509Pr ocessi ngFi | t er Ent ryPoi nt which returns a 403
error (forbidden) to the user.

1.13.3. Configuring the X509 Provider

Thereisaversion of the Contacts Sample Application which uses X509. Copy the beans and filter setup from
this as a starting point for configuring your own application. A set of example certificatesis also included
which you can use to configure your server. These are

e marissa. p12: A PKCS12 format file containing the client key and certificate. These should be installed in
your browser. It maps to the user “marissa’ in the application.

e server.pl2: The server certificate and key for HTTPS connections.

e ca.jks: A Javakeystore containing the certificate for the authority which issued marissa's certificate. This
will be used by the container to validate client certificates.
For JBoss 3.2.7 (with Tomcat 5.0), the SSL configuration intheserver. xm filelookslike this

<l-- SSL/TLS Connector configuration -->
<Connect or port="8443" address="${j boss. bi nd. address}"
maxThr eads="100" ni nSpar eThr eads="5" nmaxSpar eThr eads="15"
scheme="https" secure="true"
ssl Protocol = "TLS"
clientAuth="true" keystoreFile="%{jboss.server. hone.dir}/conf/server.pl2"
keyst or eType="PKCS12" keyst or ePass="password"
truststoreFil e="${jboss. server. honme.dir}/conf/ca.jks"
trust storeType="JKS" truststorePass="password"
/>

cl i ent Aut h can also be set towant if you still want SSL connections to succeed even if the client doesn't
provide a certificate. Obvioudy these clients won't be able to access any objects secured by Acegi Security
(unless you use a non-X 509 authentication mechanism, such as BASIC authentication, to authenticate the user).

1.14. Channel Security

1.14.1. Overview

In addition to coordinating the authentication and authorization requirements of your application, the Acegi
Security System for Spring is aso able to ensure unauthenticated web requests have certain properties. These
properties may include being of a particular transport type, having a particular Ht t pSessi on attribute set and so

100RC1

Security

on. The most common requirement is for your web requests to be received using a particular transport protocol,
suchasHTTPS.

An important issue in considering transport security is that of session hijacking. Y our web container manages a
Ht t pSessi on by referenceto aj sessi oni d that is sent to user agents either viaa cookie or URL rewriting. If
thej sessi oni d isever sent over HTTP, thereis a possibility that session identifier can be intercepted and used
to impersonate the user after they compl ete the authentication process. This is because most web containers
maintain the same session identifier for a given user, even after they switch from HTTP to HTTPS pages.

If session hijacking is considered too significant arisk for your particular application, the only option isto use
HTTPS for every request. This meansthej sessi oni d is hever sent across an insecure channel. Y ou will need

to ensure your web. xm -defined <wel cone-fil e> pointsto aHTTPS location, and the application never directs
the user to aHTTP location. The Acegi Security System for Spring provides a solution to assist with the latter.

1.14.2. Configuration

To utilise Acegi Security's channel security services, add the following linesto web. xm :

<filter>
<filter-name>Acegi Channel Processing Filter</filter-name>
<filter-class>org. acegisecurity.util.FilterToBeanProxy</filter-class>
<init-paranp
<par am nane>t ar get Cl ass</ par am nanme>
<par am val ue>or g. acegi securi ty. secur echannel . Channel Processi ngFi | t er </ par am val ue>
</init-paran>
</filter>

<filter-mppi ng>
<filter-nane>Acegi Channel Processing Filter</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-mppi ng>

As usual when running Fi | t er ToBeanPr oxy, you will also need to configure the filter in your application
context:

<bean i d="channel ProcessingFilter" class="org. acegi security.securechannel . Channel ProcessingFilter">
<property nanme="channel Deci si onManager " ><ref bean="channel Deci si onManager"/></ property>
<property name="filterlnvocationDefinitionSource">
<val ue>
CONVERT_URL_TO_LOWERCASE_BEFORE_COVPARI SON
\ A/ secur e/ . *\ Z=REQUI RES_SECURE_CHANNEL
\ AV acegi | ogi n. j sp. *\ Z=REQUI RES_SECURE_CHANNEL
\A/j _acegi _security_check. *\ Z=REQUI RES_SECURE_CHANNEL
\ A *\ Z=REQUI RES_| NSECURE_CHANNEL
</ val ue>
</ property>
</ bean>

<bean i d="channel Deci si onManager"
cl ass="org. acegi security. securechannel . Channel Deci si onManager | npl " >
<property nanme="channel Processors">
<list>
<ref bean="secureChannel Processor"/>
<ref bean="insecureChannel Processor"/>
</list>
</ property>
</ bean>

<bean i d="secureChannel Processor" cl ass="org. acegi security. securechannel . Secur eChannel Processor"/ >

<bean i d="i nsecur eChannel Processor"
cl ass="org. acegi security. securechannel . | nsecur eChannel Processor"/ >

LikeFilterSecurityl nterceptor, Apache Ant style paths are also supported by the

Acegi Security System for Spring 50

Security

Channel ProcessingFilter.

The channel Processi ngFi | t er operates by filtering all web requests and determining the configuration
attributes that apply. It then delegates to the Channel Deci si onManager . The default implementation,

Channel Deci si onManager | mpl , should suffice in most cases. It simply delegates through the list of configured
Channel Processor instances. A Channel Processor Will review the request, and if it is unhappy with the
request (eg it was received across the incorrect transport protocol), it will perform aredirect, throw an
exception or take whatever other action is appropriate.

Included with the Acegi Security System for Spring are two concrete Channel Processor implementations:
Secur eChannel Processor ensures requests with a configuration attribute of REQUI RES_SECURE_CHANNEL are
received over HTTPS, whilst | nsecur eChannel Processor ensures requests with a configuration attribute of
REQUI RES_| NSECURE_CHANNEL are received over HTTP. Both implementations delegate to a

Channel Ent ryPoi nt if the required transport protocol is not used. The two Channel Ent r yPoi nt
implementations included with Acegi Security simply redirect the request to HTTP and HTTPS as appropriate.
Appropriate defaults are assigned to the Channel Processor implementations for the configuration attribute
keywords they respond to and the channel Ent r yPoi nt they delegate to, although you have the ability to
override these using the application context.

Note that the redirections are absolute (eg ht t p: / / www. conpany. com 8080/ app/ page), not relative (eg

/ app/ page). During testing it was discovered that Internet Explorer 6 Service Pack 1 has a bug whereby it does
not respond correctly to aredirection instruction which also changes the port to use. Accordingly, absolute
URLs are used in conjunction with bug detection logic in the Por t Resol ver | npl that iswired up by default to
many Acegi Security beans. Please refer to the JavaDocs for Por t Resol ver | npl for further details.

1.14.3. Usage

Once configured, using the channel security filter is very easy. Simply request pages without regard to the
protocol (ieHTTP or HTTPS) or port (eg 80, 8080, 443, 8443 etc). Obvioudy you'll still need away of making
theinitial request (probably viatheweb. xm <wel cone-fi | e> or awell-known home page URL), but once this
is done the filter will perform redirects as defined by your application context.

Y ou can also add your own Channel Processor implementations to the Channel Deci si onManager | npl . For
example, you might set aHt t pSessi on attribute when a human user is detected via a"enter the contents of this
graphic" procedure. Your channel Processor would respond to say REQUI RES_HUMAN_USER configuration
attributes and redirect to an appropriate entry point to start the human user validation processif the

Ht t pSessi on attribute is not currently set.

To decide whether a security check belongsin achannel Processor Or an AccessDeci si onVot er , remember
that the former is designed to handle unauthenticated requests, whilst the latter is designed to handle
authenticated requests. The latter therefore has access to the granted authorities of the authenticated principal.
In addition, problems detected by a channel Processor will generally cause aHTTP/HTTPS redirection so its
requirements can be met, whilst problems detected by an AccessDeci si onVot er will ultimately result in an
AccessDeni edExcept i on (depending on the governing AccessDeci si onManager).

1.15. Instance-Based Access Control List (ACL) Security

1.15.1. Overview

Complex applications often will find the need to define access permissions not simply at a web request or
method invocation level. Instead, security decisions need to comprise both who (Aut hent i cat i on), where

100RC1

Security

Met hodl nvocat i on) and what (SoneDormai nQvj ect). In other words, authorization decisions also need to
consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, aswell asthe pet clinic's customers. The staff will have access
to al of the data, whilst your customerswill only be able to see their own customer records. To makeit alittle
more interesting, your customers can allow other users to see their customer records, such as their " puppy
preschool "mentor or president of their local "Pony Club". Using Acegi Security System for Spring as the
foundation, you have several approaches that can be used:

1. Writeyour business methods to enforce the security. Y ou could consult a collection within the Cust oner
domain object instance to determine which users have access. By using the
Securi t yCont ext Hol der . get Cont ext () . get Aut hent i cati on(), you'll be able to access the
Aut hent i cat i on object.

2. Writean AccessDeci si onVot er to enforce the security from the G- ant edAut hor i t y[] Sstored in the
Aut hent i cat i on object. Thiswould mean your Aut hent i cat i onManager would need to populate the
Aut hent i cat i on With custom G ant edAut hori t y[]s representing each of the Cust oner domain object
instances the principal has access to.

3. Writean AccessDeci si onVot er to enforce the security and open the target cust onmer domain object
directly. This would mean your voter needs access to aDAO that allowsit to retrieve the Cust oner object.
It would then access the cust oner object's collection of approved users and make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization checking to
your business code. The main problems with this include the enhanced difficulty of unit testing and the fact it
would be more difficult to reuse the cust omer authorization logic elsewhere. Obtaining the

G ant edAut hori ty[] Sfrom the Aut hent i cat i on object is also fine, but will not scale to large numbers of
Cust orrer S. If auser might be able to access 5,000 cust oner s (unlikely in this case, but imagine if it werea
popular vet for alarge Pony Club!) the amount of memory consumed and time required to construct the

Aut hent i cat i on object would be undesirable. The final method, opening the cust oner directly from external
code, is probably the best of the three. It achieves separation of concerns, and doesn't misuse memory or CPU
cycles, but it is il inefficient in that both the AccessDeci si onvot er and the eventual business method itself
will perform acall to the DAO responsible for retrieving the cust oner object. Two accesses per method
invocation is clearly undesirable. In addition, with every approach listed you'll need to write your own access
control list (ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

1.15.2. The org.acegisecurity.acl Package

Theorg. acegi security. acl packageisvery simple, comprising only a handful of interfaces and asingle
class, as shown in Figure 6. It provides the basic foundation for access control list (ACL) lookups.

Acegi Security System for Spring 52

Security

Z<Interfaces= Z<interfacesx>

AclEntry {_:___ Aclhanager

& Feuses s getficlgdomaininstance: Object) : AclEntny(]
|gettclgdomaininstance: Object authentication: Authentication) : AclEntry|]

N

L
Hreallzleb}
1

AclProviderdtanager ZdusaEE } 2<d|nteface==
AcIProvider
/i

=<realizg==
I

Z<lnterfaces= i]
{ ___________________________ BazicAcIProvider

BazicAclIEntny

ZEseEE

Figure 6: Access Control List Manager

The centra interface is Acl Manager , which is defined by two methods:

public Acl Entry[] getAcls(java.lang. Object domainl nstance);
public Acl Entry[] getAcl s(java.lang. Object donmi nl nstance, Authentication authentication);

Acl Manager isintended to be used as a collaborator against your business objects, or, more desirably,
AccessDeci si onVot er S. Thismeans you use Spring's normal Appl i cat i onCont ext featuresto wire up your
AccessDeci si onVot er (0r business method) with an Acl Manager . Consideration was given to placing the ACL
information in the Cont ext Hol der, but it was felt thiswould be inefficient both in terms of memory usage as
well as the time spent loading potentially unused ACL information. The trade-off of needing to wireup a
collaborator for those objects requiring ACL information is rather minor, particularly in a Spring-managed
application.

The first method of the Acl Manager will return all ACLs applying to the domain object instance passed to it.
The second method does the same, but only returns those ACL s which apply to the passed Aut henti cati on
object.

The Acl Ent ry interface returned by Acl Manager is merely a marker interface. Y ou will need to provide an
implementation that reflects that ACL permissions for your application.

Rounding out the or g. acegi securi ty. acl packageisan Acl Provi der Manager class, with a corresponding
Acl Provi der interface. Acl Provi der Manager iSaconcrete implementation of Acl Manager , which iterates
through registered Acl Provi der S. Thefirst Acl Provi der that indicates it can authoritatively provide ACL
information for the presented domain object instance will be used. Thisis very similar to the

Aut henti cat i onProvi der interface used for authentication.

With this background, let's now look at a usable ACL implementation.

1.15.3. Integer Masked ACLs

Acegi Security System for Spring includes a production-quality ACL provider implementation, which is shown
inFigure7.

100RC1

Security

<<Intefaces=> <<Intefaces=>
2dlnterfacesx
EffectivefclzResohrer X BasicAaclEntyCache
AcIProvider

= -

£ s i -
<grealizer - | seysenE -~
1 158

-
=arealiges» - 2dlnterfacesx
|

GrantedAuthorityEffectivefclsResolver Ssuser¥a

1 - iuzerr AclObjectldentityfuware
BasicAclProovider [T 7T T T T T T T T T T T T T T F

___________ <users
<<Interface>> L4yuser: T

BazicAc|Entry JdbeDaolmpl _ zdrealizer: _} <einterfacesx
BasicAclDao
<<reallfzﬁ'e}¥>

i

getfclgaciObjectldentity: AclObjectldentity) : BasicAclEntr
AbstractBasicAc! Ent
JdbcExtendedbacimpl [‘}‘

Fealizers
2
-~

SimplefclEntry PRI <<Interfaces=> =<Intefaces>

AclObjectldentity BasicAc|Extendedlan

|
<<rea|i%e>> createlbasictc|Entry: BasicaclEntry) : void
I

deletetaciObjectldentity: AclObjectidentity) : void
NamedEntityObje ctidentity elete(aslObjectidentity: AclDbjectidentity) : voi

deletefaclObjectidentity: AclObjectldentity,recipient: Object) : woid

changehdasaclObjectidentity: AclObjectidentity,recipient: Object,newhdash: Integer : void

Figure 7: Basic ACL Manager

The implementation is based on integer masking, which is commonly used for ACL permissions given its
flexibility and speed. Anyone who has used Unix's chmod command will know all about this type of permission
masking (eg chrmod 777). You'll find the classes and interfaces for the integer masking ACL package under
org. acegi security. acl . basic.

Extending the Acl Ent ry interface isaBasi cAcl Ent ry interface, with the main methods shown below:

public Acl Objectldentity getAcl Objectldentity();
public Acl Objectldentity getAcl ObjectParentldentity();
public int getMask();

public java.l ang. Object getRecipient();

As shown, each Basi cAcl Ent ry hasfour main properties. The mask isthe integer that represents the
permissions granted to ther eci pi ent . The acl Qbj ect | dent i ty isableto identify the domain object instance
for which the ACL applies, and the acl oj ect Par ent | dent i t y optionally specifies the parent of the domain
object instance. Multiple Basi cAcl Ent rysusually exist against a single domain object instance, and as
suggested by the parent identity property, permissions granted higher in the object hierarchy will trickle down
and be inherited (unless blocked by integer zero).

Basi cAcl Ent ry implementations typically provide convenience methods, such asi sReadAl | owed(), to avoid
application classes needing to perform bit masking themselves. The Si npl eAcl Ent ry and
Abst r act Basi cAcl Ent ry demonstrate and provide much of this bit masking logic.

The Acl (vj ect I dent i ty itself ismerely a marker interface, so you need to provide implementations for your
domain objects. However, the package does include aNarmedEnt i t yQbj ect | dent i t y implementation which will
suit many needs. The NanedEnt i t yQoj ect | dent i ty identifies a given domain object instance by the classname
of the instance and the identity of the instance. A NamedEnt i t yObj ect | dent i ty can be constructed manually
(by calling the constructor and providing the classname and identity St ri ngs), or by passing in any domain
object that containsaget | d() method.

The actual Acl Provi der implementation is named Basi cAcl Provi der . It has adopted a similar design to that
used by the authentication-related DaoAut hent i cat i onPr ovder . Specifically, you define aBasi cAcl Dao against
the provider, so different ACL repository types can be accessed in a pluggable manner. The Basi cAcl Provi der
also supports pluggable cache providers (with Acegi Security System for Spring including an implementation

Acegi Security System for Spring 54

Security

that fronts EH-CACHE).

The Basi cAcl Dao interfaceis very simple to implement:
publ i c Basi cAcl Entry[] getAcl s(Acl bjectldentity acl Objectldentity);

A Basi cAcl Dao implementation needs to understand the presented Acl Obj ect I dent i ty and how it mapsto a
storage repository, find the relevant records, and create appropriate Basi cAcl Ent ry objects and return them.

Acegi Security includes asingle Basi cAcl Dao implementation called JdbcDaol npl . Asimplied by the name,
JdbcDaol npl accesses ACL information from a JDBC database. There is also an extended version of this DAO,
JdbcExt endedDaol mpl , which provides CRUD operations on the JDBC database, although we won't discuss
these features here. The default database schema and some sample datawill aid in understanding its function:

CREATE TABLE acl _obj ect _identity (

id I DENTITY NOT NULL,

obj ect _identity VARCHAR | GNORECASE(250) NOT NULL,

parent _obj ect | NTEGER,

acl _cl ass VARCHAR | GNORECASE(250) NOT NULL,

CONSTRAI NT uni que_obj ect _i dentity UN QUE(object _identity),

FOREI GN KEY (parent _obj ect) REFERENCES acl _object_identity(id)
)

CREATE TABLE acl _perm ssion (

id | DENTI TY NOT NULL,

acl _object_identity | NTEGER NOT NULL,

reci pi ent VARCHAR_| GNORECASE(100) NOT NULL,

mask | NTEGER NOT NULL,

CONSTRAI NT uni que_reci pi ent UNI QUE(acl _obj ect _identity, recipient),

FOREI GN KEY (acl _object_identity) REFERENCES acl _object_identity(id)
)

I NSERT | NTO acl _object_identity VALUES (1, 'corp.DomainGobject:1', null,
'org. acegi security. acl . basic. Sinpl eAcl Entry');

I NSERT | NTO acl _object_identity VALUES (2, 'corp.Domai nGoject:2', 1,
'org. acegi security. acl . basic. Sinpl eAcl Entry');

I NSERT | NTO acl _obj ect _identity VALUES (3, 'corp.Donmai nObject: 3", 1,
'org. acegi security. acl . basic. Sinpl eAcl Entry');

I NSERT | NTO acl _obj ect _identity VALUES (4, 'corp.Donmai nObject:4', 1,
'org.acegi security.acl.basic.SinpleAcl Entry');

I NSERT | NTO acl _obj ect _identity VALUES (5, 'corp.Donmai nObject:5', 3,
'org.acegi security.acl.basic.SinpleAcl Entry');

I NSERT | NTO acl _obj ect_identity VALUES (6, 'corp.Domai nCbject:6', 3,
'org.acegi security.acl.basic.SinpleAcl Entry');

I NSERT | NTO acl _perm ssi on VALUES (null
I NSERT | NTO acl _perm ssi on VALUES (null

, 1, 'ROLE_SUPERVI SOR , 1);
, 2
I NSERT | NTO acl _perm ssion VALUES (null, 2
, 3
, 6

' ROLE_SUPERVI SOR , 0);
"marissa', 2);
‘scott', 14);

, 'scott', 1);

I NSERT | NTO acl _perm ssi on VALUES (null
I NSERT | NTO acl _perm ssion VALUES (null

As can be seen, database-specific constraints are used extensively to ensure the integrity of the ACL
information. If you need to use a different database (Hypersonic SQL statements are shown above), you should
try to implement equivalent constraints.

The JdbcDaol npl Will only respond to requests for NamedEnt i t yObj ect | dent i tyS. It converts such identities
into asingle st ri ng, comprising the NanmedEnt i t yQbj ect | denti ty. get d assname() +":" +

NamedEnt i t yObj ect | dentity. getld(). Thisyieldsthetype of obj ect _i dentity values shown above. As
indicated by the sample data, each database row corresponds to asingle Basi cAcl Ent ry. As stated earlier and
demonstrated by cor p. Domai nQbj ect : 2 in the above sample data, each domain object instance will often have
multiple Basi cAcl Ent ry[]s.

AsJdbcDaol npl isrequired to return concrete Basi cAcl Ent ry classes, it needs to know which Basi cAcl Entry

100RC1

Security

implementation it isto create and populate. Thisistherole of the acl _cl ass column. JdbcDaol npl will create
the indicated class and set its mask, r eci pi ent , acl Obj ect | dent i ty and acl Obj ect Parent | dent i ty properties.

Asyou can probably tell from the sample data, the par ent _obj ect _i denti ty value can either be null or in the
same format asthe obj ect i denti ty. If non-null, JdbcDaol npl will create aNamedEnt i t yObj ect | dentity to
place inside the returned Basi cAcl Ent ry class.

Returning to the Basi cAcl Provi der , before it can poll the Basi cAcl Dao implementation it needs to convert the
domain object instance it was passed into an Acl Obj ect | denti ty. Basi cAcl Provi der hasapr ot ect ed

Acl Ooj ect I dentity obtainldentity(Chject domainlnstance) method that isresponsible for this. Asa
protected method, it enables subclasses to easily override. The normal implementation checks whether the
passed domain object instance implements the Acl Obj ect | dent i t yAwar e interface, which is merely a getter for
an Acl oj ect | dent i ty. If the domain object doesimplement this interface, that is the identity returned. If the
domain object does not implement this interface, the method will attempt to create an Acl Qoj ect I denti ty by
passing the domain object instance to the constructor of a class defined by the

Basi cAcl Provi der . get Def aul t Acl Obj ect | denti ty() method. By default the defined classis

NamedEnt i t yObj ect | dent i ty, which was described in more detail above. Therefore, you will need to either (i)
provide aget | d() method on your domain objects, (ii) implement Acl Gbj ect | dent i t yAwar e On your domain
objects, (iii) provide an alternative Acl vj ect | dent i t y implementation that will accept your domain object in
its constructor, or (iv) override the obt ai nl dent i t y(Obj ect) method.

Oncethe Acl bj ect I dent i ty of the domain object instance is determined, the Basi cAcl Provi der will poll the
DAO to obtainitsBasi cAcl Ent ry[]s. If any of the entries returned by the DA O indicate there is a parent, that
parent will be polled, and the process will repeat until thereis no further parent. The permissions assigned to a
reci pi ent closest to the domain object instance will always take priority and override any inherited
permissions. From the sample data above, the following inherited permissions would apply:

-- Mask integer O = no perm ssions

-- Mask integer 1 = adm nister

-- Mask integer 2 = read

-- Mask integer 6 = read and wite perm ssions

- Mask integer 14 = read and wite and create perm ssions

--- *** | NHERI TED RI GHTS FOR DI FFERENT | NSTANCES AND RECI PI ENTS ***
- INSTANCE RECI Pl ENT PERM SSI ON(S) (COMVENT #1 NSTANCE)

1 ROLE_SUPERVI SOR Admi ni ster
2 ROLE_SUPERVI SOR None (overrides parent #1)
mari ssa Read
3 ROLE_SUPERVI SOR Admi ni ster (from parent #1)
scot t Read, Wite, Create
4 ROLE_SUPERVI SOR Admi ni ster (from parent #1)
5 ROLE_SUPERVI SOR Admi ni ster (from parent #3)
scot t Read, Wite, Create (from parent #3)
6 ROLE_SUPERVI SOR Admi ni ster (from parent #3)
scot t Admi ni ster (overrides parent #3)

So the above explains how a domain object instance hasits Acl oj ect | dent i ty discovered, and the

Basi cAcl Dao Will be polled successively until an array of inherited permissions is constructed for the domain
object instance. The final step is to determine the Basi cAcl Ent ry[]s that are actually applicable to agiven
Aut hent i cat i on Object.

Asyou would recall, the Acl Manager (and all delegates, up to and including Basi cAcl Provi der) provides a
method which returns only those Basi cAcl Ent ry[]s applying to a passed Aut hent i cat i on object.

Basi cAcl Provi der deliversthisfunctionality by delegating the filtering operation to an

Ef f ecti veAcl sResol ver implementation. The default implementation,

G ant edAut hori t yEf f ect i veAcl sResol ver , Will iterate through the Basi cAcl Ent ry[]s and include only those
wherether eci pi ent isequal to either the Aut hent i cati on'Spri nci pal or any of the Aut hent i cati on's

Acegi Security System for Spring 56

Security

G ant edAut hor i t y[]s. Please refer to the JavaDocs for more information.

LCLEMr e 1. ACLObiectidertity
ROLE_SUPERWISOR
20m e

parV = parert
parert
)
LBCLE miry 2 4. 3: LBCLE niry
AC LObject! dertity AL Object| dentity AL Object dentity
ROLE_SURERWISOR scott
OpEmESRNE m3d, Wik, 3 ceIE
parent xf_’? ?& parert
WACLE nry 5. B (ACLE niry
AC1L Object] dentity ACL Objectidentity

markza oot
read adm ke r

Figure 8: ACL Instantiation Approach

1.15.4. Conclusion

Acegi Security'sinstance-specific ACL packages shield you from much of the complexity of developing your
own ACL approach. The interfaces and classes detailed above provide a scalable, customisable ACL solution
that is decoupled from your application code. Whilst the reference documentation may suggest complexity, the
basic implementation is able to support most typical applications out-of-the-box.

1.16. Filters

1.16.1. Overview

The Acegi Security System for Spring uses filters extensively. Each filter is covered in detail in arespective
section of this document. This section includes information that appliesto all filters.

1.16.2. FilterToBeanProxy

Most filters are configured using the Fi | t er ToBeanPr oxy. An example configuration from web. xm follows:

<filter>
<filter-nanme>Acegi HTTP Request Security Filter</filter-nanme>
<filter-class>org. acegisecurity.util.FilterToBeanProxy</filter-class>
<i nit-parane
<par am nane>t ar get Cl ass</ par am nanme>
<par am val ue>or g. acegi security. Cl assThat | npl enent sFi | t er </ par am val ue>
</init-paranp
</filter>

Notice that the filter inweb. xm isactually aFi | t er ToBeanPr oxy, and not the filter that will actually
implements the logic of the filter. What Fi | t er ToBeanPr oxy doesis delegate theFi | t er 's methods through to a
bean which is obtained from the Spring application context. This enables the bean to benefit from the Spring
application context lifecycle support and configuration flexibility. The bean must implement
javax.servlet.Filter.

TheFi I t er ToBeanPr oxy only requires asingle initialization parameter, t ar get d ass Or t ar get Bean. The
tar get d ass parameter locates the first object in the application context of the specified class, whilst

100RC1

Security

t ar get Bean locates the object by bean name. Like standard Spring web applications, the Fi | t er ToBeanPr oxy
accesses the application context via

WebAppl i cati onCont ext Uti | s. get WebAppl i cati onCont ext (Ser vl et Cont ext), SO you should configure a
Cont ext Loader Li st ener inweb. xn .

Thereisalifecycleissue to consider when hosting Fi | t er sin an 10C container instead of a servlet container.
Specifically, which container should be responsible for calling the Fi I t er 's "startup” and "shutdown" methods?
It is noted that the order of initialization and destruction of aFi | t er can vary by servlet container, and this can
cause problemsif oneFi I t er depends on configuration settings established by an earlier initidlized Fi I t er .
The Spring 10C container on the other hand has more comprehensive lifecycle/l oC interfaces (such as
I'nitializingBean, Di sposabl eBean, BeanNaneAwar e, Appl i cat i onCont ext Awar e and many others) aswell as
awell-understood interface contract, predictable method invocation ordering, autowiring support, and even
optionsto avoid implementing Spring interfaces (eg the dest r oy- net hod attribute in Spring XML). For this
reason we recommend the use of Spring lifecycle services instead of servlet container lifecycle services
wherever possible. By default Fi | t er ToBeanPr oxy Will not delegatei ni t (Fi | t er Confi g) and destroy()
methods through to the proxied bean. If you do require such invocations to be delegated, set thel i f ecycl e
initialization parameter to ser vl et - cont ai ner - managed.

1.16.3. FilterChainProxy

We strongly recommend to use Fi | t er Chai nPr oxy instead of adding multiple filters to web. xmi .

Whilst Fi | t er ToBeanPr oxy isavery useful class, the problem isthat the lines of code required for <fil ter>
and <f il ter-mappi ng> entriesinweb. xm explodes when using more than afew filters. To overcome this
issue, Acegi Security providesari | t er Chai nProxy class. It iswired using aFi | t er ToBeanPr oxy (just likein
the example above), but the target classisor g. acegi security. util. Filter Chai nProxy. Thefilter chainis
then declared in the application context, using code such as this:

<bean i d="filterChai nProxy" class="org.acegisecurity.util.FilterChainProxy">
<property name="filterlnvocationDefinitionSource">
<val ue>
CONVERT_URL_TO_LOWERCASE_BEFORE_COVPARI SON
PATTERN_TYPE_APACHE_ANT
/ webServi ces/ **=ht t pSessi onCont ext | nt egrati onFi | t er Wt hASCFal se, basi cProcessi ngFil ter, securityEnforcenmentFilter
/ **=ht t pSessi onCont ext | nt egr ati onFi | t er Wt hASCTr ue, aut hent i cati onProcessi ngFil ter, securityEnforcenentFilter
</ val ue>
</ property>
</ bean>

Y ou may notice similarities with the way Securi t yEnf or cenent Fi | t er IS declared. Both regular expressions
and Ant Paths are supported, and the most specific URIs appear first. At runtimethe Fi | t er Chai nPr oxy will
locate the first URI pattern that matches the current web request. Each of the corresponding configuration
attributes represent the name of a bean defined in the application context. The filters will then be invoked in the
order they are specified, with standard Fi | t er Chai n behaviour being respected (aFi | t er can elect not to
proceed with the chain if it wishes to end processing).

Asyou can see, Fi t| er Chai nPr oxy requires the duplication of filter names for different request patterns (in the
above example, ht t pSessi onCont ext I nt egr ati onFi | ter and securityEnforcement Fi | t er are duplicated).
This design decision was made to enable Fi | t er Chai nPr oxy to specify different Fi | t er invocation orders for
different URI patterns, and also to improve both the expressiveness (in terms of regular expressions, Ant Paths,
and any custom Fi | t er | nvocat i onDef i ni ti onSour ce implementations) and clarity of which Fi I t er s should
be invoked.

Y ou may have noticed we have declared two Ht t pSessi onCont ext | nt egrat i onFi | t er Sin the filter chain (Asc
isshort for al | owSessi onCr eat i on, aproperty of Ht t pSessi onCont ext | nt egr at i onFi | ter). ASweb services

Acegi Security System for Spring 58

Security

will never present aj sessi oni d on future requests, creating H: t pSessi ons for such user agents would be
wasteful. If you had a high-volume application which required maximum scalability, we recommend you use
the approach shown above. For smaller applications, using asingle Ht t pSessi onCont ext | nt egr at i onFi | t er
(with its default al | owSessi onCreat i on astrue) would likely be sufficient.

In relation to lifecycle issues, the Fi | t er Chai nProxy will always delegatei nit (Fi | ter Config) anddestroy()
methods through to the underlaying Fi | t er sif such methods are called against Fi | t er Chai nPr oxy itself. Inthis
case, Fi | t er Chai nProxy guaranteesto only initialize and destroy each Fi | t er once, irrespective of how many
timesit isdeclared by theFi | t er I nvocat i onDefi ni ti onSour ce. Y ou control the overall choice asto whether
these methods are called or not viathel i f ecycl e initialization parameter of the Fi | t er ToBeanPr oxy that
proxiesFi | t er Chai nProxy. As discussed above, by default any servlet container lifecycle invocations are not
delegated through to Fi | t er Chai nPr oxy.

1.16.4. Filter Ordering

The order that filters are defined in web. xm isimportant. NB: THE FILTER ORDER CHANGED FROM
VERSION 0.8.0.

Irrespective of which filters you are actually using, the order of the <f i I t er - mappi ng>s should be as follows:

1. channel Processi ngFi |l t er, because it might need to redirect to a different protocol

2. Concurrent Sessi onFi | t er, because it doesn't use any Securi t yCont ext Hol der functionality but needsto
update the Sessi onRegi st ry to reflect ongoing requests from the principal

3. HttpSessionContext | ntegrationFilter,SOacContext canbe setup inthe Securi t yCont ext Hol der at
the beginning of aweb request, and any changes to the Context can be copied to the Ht t pSessi on when
the web regquest ends (ready for use with the next web request)

4. Authentication processing mechanisms - Aut hent i cat i onPr ocessi ngFi | t er, CasProcessi ngFi | ter,
Basi cProcessi ngFilter, HttpRequestlntegrationFilter, JbosslntegrationFilter etc- sothat the
Secur it yCont ext Hol der can be modified to contain avalid Aut hent i cat i on request token

5. The Cont ext Hol der Awar eRequest Fi | ter, if you areusing it to install an Acegi Security aware
Ht t pSer vl et Request W apper into your servlet container

6. Renember MeProcessi ngFi | ter, SO that if no earlier authentication processing mechanism updated the
Securi t yCont ext Hol der , and the request presents a cookie that enables remember-me services to take
place, a suitable remembered aut henti cati on Object will be put there

7. AnonymousProcessi ngFi | ter, SO that if no earlier authentication processing mechanism updated the
Secur it yCont ext Hol der , @n anonymous Aut hent i cat i on object will be put there

8. SecurityEnforcementFilter,to protect web URIsand catch any Acegi Security exceptions so that an
appropriate Aut hent i cat i onEnt ryPoi nt can be launched

All of the above filtersuseFi | t er ToBeanPr oxy Of Fi | t er Chai nPr oxy, Which is discussed in the previous
sections. It is recommended that asingleFi | t er ToBeanPr oxy proxy through to asingleFi | t er Chai nPr oxy for
each application, with that Fi | t er Chai nProxy defining all of the Acegi Security Filters.

If you're using SiteMesh, ensure the Acegi Security filters execute before the SiteMesh filters are called. This
enables the Securi t yCont ext Hol der to be populated in time for use by SiteMesh decorators.

100RC1

Security

1.17. Contacts Sample Application

Included with the Acegi Security System for Spring is avery simple application that can demonstrate the basic
security facilities provided by the system (and confirm your Container Adapter is properly configured if you're
using one).

If you build from CV'S, the Contacts sampl e application includes three deployable versions:

acegi - security-sanpl e-contacts-filter.war isconfigured with the HTTP Session Authentication
approach. The acegi - securi ty- sanpl e- cont act s- ca. war 1S cOnfigured to use a Container Adapter. Finally,

acegi - securi ty-sanpl e- cont act s- cas. war iSdesigned to work with aYae CAS server. If you're just
wanting to see how the sample application works, please uUse acegi - securi ty- sanpl e-contacts-filter.war aSit does
not require specia configuration of your container. Thisis also the artifact included in ofiical release ZIPs.

To deploy, ssimply copy the relevant WAR file from the Acegi Security System for Spring distribution into your
container’ swebapps directory.

After starting your container, check the application can load. Visit

http://1 ocal host : 8oso/ acegi - securi ty-sanpl e-contacts-filter (or whichever URL is appropriate for
your web container and the WAR you deployed). A random contact should be displayed. Click "Refresh"
several times and you will see different contacts. The business method that provides this random contact is not
secured.

Next, click "Debug". Y ou will be prompted to authenticate, and a series of usernames and passwords are
suggested on that page. Simply authenticate with any of these and view the resulting page. It should contain a
success message similar to the following:

Context on SecurityContextHolder is of type: org.acegisecurity.context.SecurityContextlmpl
The Context implements SecurityContext.
Authentication object is of type: org.acegisecurity.adapters.Principal AcegiUser Token

Authentication object as a String:

org.acegisecurity.adapters.Principal AcegiUserToken@e9a7c2: Username: marissa; Password:
[PROTECTED]; Authenticated: true; Granted Authorities: ROLE_TELLER,
ROLE_SUPERVISOR

Authentication object holds the following granted authorities:

ROLE_TELLER (getAuthority(): ROLE_TELLER)

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)

SUCCESS! Y our [container adapterjweb filter] appears to be properly configured!
If you receive a different message, and deployed acegi - securi t y- sanpl e- cont act s- ca. war , check you have
properly configured your Container Adapter as described elsewhere in this reference guide.

Once you successfully receive the above message, return to the sample application's home page and click
"Manage". You can then try out the application. Notice that only the contacts available to the currently logged
on user are displayed, and only users with ROLE_SUPERVI SOR are granted access to delete their contacts. Behind
the scenes, the Met hodSecuri tyl nt er cept or S securing the business objects. If you're using

acegi - securi ty-sanpl e-contacts-filter.war Of acegi - security-sanpl e-contacts-cas. war, the

Acegi Security System for Spring 60

Security

Fil terSecuritylnterceptor iSalso securing the HTTP requests. If using either of these WARS, be sure to try
visiting ht t p: / /1 ocal host : 8080/ cont act s/ secur e/ super , Which will demonstrate access being denied by the
Securi t yEnf or cenent Fi | t er . Note the sample application enables you to modify the access control lists
associated with different contacts. Be sure to give this atry and understand how it works by reviewing the
sample application's application context XML files.

The Contacts sample application also include acl i ent directory. Inside you will find a small application that
queries the backend business objects using several web services protocols. This demonstrates how to use the
Acegi Security System for Spring for authentication with Spring remoting protocols. To try this client, ensure
your servlet container is still running the Contacts sample application, and then executecl i ent nari ssa

koal a. The command-line parameters respectively represent the username to use, and the password to use. Note
that you may need to edit cl i ent . properti es to use adifferent target URL.

Please note the sample application's cl i ent does not currently support CAS. You can still giveit atry, though,
if you're ambitious: try cl i ent _cas_statel ess_ YOUR SERVI CE- TI CKET- | D.

1.18. Become Involved

We welcome you to become involved in the Acegi Security System for Spring project. There are many ways of
contributing, including reading the mailing list and responding to questions from other people, writing new
code, improving existing code, assisting with documentation, or simply making suggestions. Please read our
project policies web page that is available on the Acegi Security home page. This explains the path to become a
committer, and the administration approaches we use with the project.

Sourcelorge provides CV S services for the project, allowing anybody to access the latest code. If you wish to
contribute new code, please observe the following requirements. These exist to maintain the quality and
consistency of the project:

e Useasuitable IDE Jalopy plug-in to convert your code into the project's consistent style
e Ensure your code does not break any unit tests (run the Maventest : t est goal)

» If you have added new code, please provide suitable unit tests (use the Maven cl over: ht ni - report to view
coverage)

« Join the acegisecurity-developer and acegisecurity-cvs mailing lists so you're in the loop
¢ UseCameCase
e Add code contributions to JJRA

e AddaCVSsid: index.xm ,v 1.3 2004/04/02 21:12:25 fhos Exp $ tagto the JavaDocsfor any new
classyou create

1.19. Further Information

Questions and comments on the Acegi Security System for Spring are welcome. Please use the Spring
Community Forum web site at ht t p: // f or um spri ngf r amewor k. or g. You're also welcometo join the
acegisecurity-developer mailing list. Our project home page (where you can obtain the latest release of the
project and accessto CVS, mailing lists, forums etc) isat htt p: // acegi securi ty. sour cef or ge. net .

100RC1

	Acegi Security System for Spring
	Table of Contents
	Preface
	Chapter 1. Security
	1.1. Before You Begin
	1.2. Introduction
	1.2.1. Current Status

	1.3. High Level Design
	1.3.1. Key Components
	1.3.2. Supported Secure Objects
	1.3.3. Configuration Attributes

	1.4. Request Contexts
	1.4.1. Historical Approach
	1.4.2. SecurityContext
	1.4.3. Context Storage
	1.4.4. Localization

	1.5. Security Interception
	1.5.1. All Secure Objects
	1.5.2. AOP Alliance (MethodInvocation) Security Interceptor
	1.5.3. AspectJ (JoinPoint) Security Interceptor
	1.5.4. FilterInvocation Security Interceptor

	1.6. Authentication
	1.6.1. Authentication Requests
	1.6.2. Authentication Manager
	1.6.3. Provider-Based Authentication
	1.6.4. Concurrent Session Support
	1.6.5. Data Access Object Authentication Provider
	1.6.6. In-Memory Authentication
	1.6.7. JDBC Authentication
	1.6.8. JAAS Authentication
	1.6.8.1. JaasAuthenticationProvider
	1.6.8.2. Callbacks
	1.6.8.3. AuthorityGranters

	1.6.9. Siteminder Authentication
	1.6.9.1. SiteminderAuthenticationProcessingFilter

	1.6.10. Authentication Recommendations

	1.7. Authorization
	1.7.1. Granted Authorities
	1.7.2. Access Decision Managers
	1.7.3. Voting Decision Manager
	1.7.4. Authorization-Related Tag Libraries
	1.7.4.1. AuthorizeTag
	1.7.4.2. AuthenticationTag
	1.7.4.3. AclTag

	1.7.5. Authorization Recommendations

	1.8. After Invocation Handling
	1.8.1. Overview
	1.8.2. ACL-Aware AfterInvocationProviders

	1.9. Run-As Authentication Replacement
	1.9.1. Purpose
	1.9.2. Usage

	1.10. User Interfacing with the SecurityContextHolder
	1.10.1. Purpose
	1.10.2. HTTP Form Authentication
	1.10.3. HTTP Basic Authentication
	1.10.4. HTTP Digest Authentication
	1.10.5. Anonymous Authentication
	1.10.6. Remember-Me Authentication
	1.10.7. Well-Known Locations

	1.11. Container Adapters
	1.11.1. Overview
	1.11.2. Adapter Authentication Provider
	1.11.3. Catalina (Tomcat) Installation
	1.11.4. Jetty Installation
	1.11.5. JBoss Installation
	1.11.6. Resin Installation

	1.12. Yale Central Authentication Service (CAS) Single Sign On
	1.12.1. Overview
	1.12.2. How CAS Works
	1.12.3. CAS Server Installation (Optional)
	1.12.4. CAS Acegi Security System Client Installation
	1.12.5. Advanced CAS Usage

	1.13. X509 Authentication
	1.13.1. Overview
	1.13.2. X509 with Acegi Security
	1.13.3. Configuring the X509 Provider

	1.14. Channel Security
	1.14.1. Overview
	1.14.2. Configuration
	1.14.3. Usage

	1.15. Instance-Based Access Control List (ACL) Security
	1.15.1. Overview
	1.15.2. The org.acegisecurity.acl Package
	1.15.3. Integer Masked ACLs
	1.15.4. Conclusion

	1.16. Filters
	1.16.1. Overview
	1.16.2. FilterToBeanProxy
	1.16.3. FilterChainProxy
	1.16.4. Filter Ordering

	1.17. Contacts Sample Application
	1.18. Become Involved
	1.19. Further Information

